A review on electronic and optical properties of silicon nanowire and its different growth techniques
- PMID: 23667808
- PMCID: PMC3647085
- DOI: 10.1186/2193-1801-2-151
A review on electronic and optical properties of silicon nanowire and its different growth techniques
Abstract
Electronic and optical properties of Silicon Nanowire (SiNW) obtained from theoretical studies and experimental approaches have been reviewed. The diameter dependency of bandgap and effective mass of SiNW for various terminations have been presented. Optical absorption of SiNW and nanocone has been compared for different angle of incidences. SiNW shows greater absorption with large range of wavelength and higher range of angle of incidence. Reflectance of SiNW is less than 5% over majority of the spectrum from the UV to near IR region. Thereafter, a brief description of the different growth techniques of SiNW is given. The advantages and disadvantages of the different catalyst materials for SiNW growth are discussed at length. Furthermore, three thermodynamic aspects of SiNW growth via the vapor-liquid-solid mechanism are presented and discussed.
Keywords: Bandgap; Chemical Vapour Deposition (CVD); Molecular Beam Epitaxy (MBE); Optical absorption; Reflectance; Silicon Nanowires (SiNWs).
Figures
Similar articles
-
Effective method to extract optical bandgaps in Si nanowire arrays.Opt Lett. 2011 Jul 15;36(14):2677-9. doi: 10.1364/OL.36.002677. Opt Lett. 2011. PMID: 21765506
-
Array density effect on the optical and photoelectric properties of silicon nanowire arrays via Ag-assisted chemical etching.Nanotechnology. 2023 Jul 19;34(40). doi: 10.1088/1361-6528/ace366. Nanotechnology. 2023. PMID: 37399796
-
Silicon Nanowires: A Review on Aspects of their Growth and their Electrical Properties.Adv Mater. 2009 Jul 13;21(25-26):2681-2702. doi: 10.1002/adma.200803754. Epub 2009 Jun 2. Adv Mater. 2009. PMID: 36751058 Review.
-
Silicon Nanowire Heterojunction Solar Cells with an Al2O3 Passivation Film Fabricated by Atomic Layer Deposition.Nanoscale Res Lett. 2019 Mar 15;14(1):99. doi: 10.1186/s11671-019-2930-1. Nanoscale Res Lett. 2019. PMID: 30877482 Free PMC article.
-
Silicon nanowires as field-effect transducers for biosensor development: a review.Anal Chim Acta. 2014 May 12;825:1-25. doi: 10.1016/j.aca.2014.03.016. Epub 2014 Mar 15. Anal Chim Acta. 2014. PMID: 24767146 Review.
Cited by
-
Pushing the Limits of Biosensing: Selective Calcium Ion Detection with High Sensitivity via High-k Gate Dielectric Engineered Si Nanowire Random Network Channel Dual-Gate Field-Effect Transistors.Sensors (Basel). 2023 Jul 27;23(15):6720. doi: 10.3390/s23156720. Sensors (Basel). 2023. PMID: 37571503 Free PMC article.
-
Distilling nanoscale heterogeneity of amorphous silicon using tip-enhanced Raman spectroscopy (TERS) via multiresolution manifold learning.Nat Commun. 2021 Jan 25;12(1):578. doi: 10.1038/s41467-020-20691-2. Nat Commun. 2021. PMID: 33495465 Free PMC article.
-
Highly Efficient Silicon Nanowire Surface Passivation by Bismuth Nano-Coating for Multifunctional Bi@SiNWs Heterostructures.Nanomaterials (Basel). 2020 Jul 23;10(8):1434. doi: 10.3390/nano10081434. Nanomaterials (Basel). 2020. PMID: 32717921 Free PMC article.
-
Elucidating the Effect of Etching Time Key-Parameter toward Optically and Electrically-Active Silicon Nanowires.Nanomaterials (Basel). 2020 Feb 25;10(3):404. doi: 10.3390/nano10030404. Nanomaterials (Basel). 2020. PMID: 32106503 Free PMC article.
-
The importance of design in nanoarchitectonics: multifractality in MACE silicon nanowires.Beilstein J Nanotechnol. 2019 Oct 31;10:2094-2102. doi: 10.3762/bjnano.10.204. eCollection 2019. Beilstein J Nanotechnol. 2019. PMID: 31728257 Free PMC article.
References
-
- Aijiang LU. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires. Hong Kong: Dissertation, City University of Hong Kong; 2007.
-
- Akhtar S, Usami K, Tsuchiya Y, Mizuta H, Oda S. Vapor–Liquid–Solid Growth of Small- and Uniform-Diameter Silicon Nanowires at Low Temperature from Si2H6. Appl Phys Express. 2008;1:014003–5. doi: 10.1143/APEX.1.014003. - DOI
-
- Alivisatos AP. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science. 1996;271(5251):933–937. doi: 10.1126/science.271.5251.933. - DOI
-
- Aradi B, Ramos LE, De´ak P, K¨ohler T, Bechstedt F, Zhang RQ, Frauenheim T. Theoretical study of the chemical gap tuning in silicon nanowires. Phys Rev B. 2007;76(3):1–7. doi: 10.1103/PhysRevB.76.035305. - DOI
-
- Canham LT. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett. 1990;57(10):1046–1048. doi: 10.1063/1.103561. - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources
