Genomic and proteomic analyses of the terminally redundant genome of the Pseudomonas aeruginosa phage PaP1: establishment of genus PaP1-like phages
- PMID: 23675441
- PMCID: PMC3652863
- DOI: 10.1371/journal.pone.0062933
Genomic and proteomic analyses of the terminally redundant genome of the Pseudomonas aeruginosa phage PaP1: establishment of genus PaP1-like phages
Abstract
We isolated and characterized a new Pseudomonas aeruginosa myovirus named PaP1. The morphology of this phage was visualized by electron microscopy and its genome sequence and ends were determined. Finally, genomic and proteomic analyses were performed. PaP1 has an icosahedral head with an apex diameter of 68-70 nm and a contractile tail with a length of 138-140 nm. The PaP1 genome is a linear dsDNA molecule containing 91,715 base pairs (bp) with a G+C content of 49.36% and 12 tRNA genes. A strategy to identify the genome ends of PaP1 was designed. The genome has a 1190 bp terminal redundancy. PaP1 has 157 open reading frames (ORFs). Of these, 143 proteins are homologs of known proteins, but only 38 could be functionally identified. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high-performance liquid chromatography-mass spectrometry allowed identification of 12 ORFs as structural protein coding genes within the PaP1 genome. Comparative genomic analysis indicated that the Pseudomonas aeruginosa phage PaP1, JG004, PAK_P1 and vB_PaeM_C2-10_Ab1 share great similarity. Besides their similar biological characteristics, the phages contain 123 core genes and have very close phylogenetic relationships, which distinguish them from other known phage genera. We therefore propose that these four phages be classified as PaP1-like phages, a new phage genus of Myoviridae that infects Pseudomonas aeruginosa.
Conflict of interest statement
Figures
Similar articles
-
Characterization of Two Pseudomonas aeruginosa Viruses vB_PaeM_SCUT-S1 and vB_PaeM_SCUT-S2.Viruses. 2019 Apr 1;11(4):318. doi: 10.3390/v11040318. Viruses. 2019. PMID: 30939832 Free PMC article.
-
Myoviridae bacteriophages of Pseudomonas aeruginosa: a long and complex evolutionary pathway.Res Microbiol. 2003 May;154(4):269-75. doi: 10.1016/S0923-2508(03)00070-6. Res Microbiol. 2003. PMID: 12798231
-
"phiKZ-like viruses", a proposed new genus of myovirus bacteriophages.Arch Virol. 2007;152(10):1955-9. doi: 10.1007/s00705-007-1037-7. Epub 2007 Aug 7. Arch Virol. 2007. PMID: 17680323
-
Genomic and Transcriptional Mapping of PaMx41, Archetype of a New Lineage of Bacteriophages Infecting Pseudomonas aeruginosa.Appl Environ Microbiol. 2016 Oct 27;82(22):6541-6547. doi: 10.1128/AEM.01415-16. Print 2016 Nov 15. Appl Environ Microbiol. 2016. PMID: 27590812 Free PMC article.
-
The SPO1-related bacteriophages.Arch Virol. 2010 Oct;155(10):1547-61. doi: 10.1007/s00705-010-0783-0. Epub 2010 Aug 17. Arch Virol. 2010. PMID: 20714761 Review.
Cited by
-
Host range expansion of Acinetobacter phage vB_Ab4_Hep4 driven by a spontaneous tail tubular mutation.Front Cell Infect Microbiol. 2024 Feb 16;14:1301089. doi: 10.3389/fcimb.2024.1301089. eCollection 2024. Front Cell Infect Microbiol. 2024. PMID: 38435308 Free PMC article.
-
StAP1 phage: an effective tool for treating methicillin-resistant Staphylococcus aureus infections.Front Microbiol. 2023 Sep 29;14:1267786. doi: 10.3389/fmicb.2023.1267786. eCollection 2023. Front Microbiol. 2023. PMID: 37840707 Free PMC article.
-
A novel lytic phage exhibiting a remarkable in vivo therapeutic potential and higher antibiofilm activity against Pseudomonas aeruginosa.Eur J Clin Microbiol Infect Dis. 2023 Oct;42(10):1207-1234. doi: 10.1007/s10096-023-04649-y. Epub 2023 Aug 23. Eur J Clin Microbiol Infect Dis. 2023. PMID: 37608144 Free PMC article.
-
Combination of genetically diverse Pseudomonas phages enhances the cocktail efficiency against bacteria.Sci Rep. 2023 Jun 1;13(1):8921. doi: 10.1038/s41598-023-36034-2. Sci Rep. 2023. PMID: 37264114 Free PMC article.
-
Virulent Phage vB_EfaS_WH1 Removes Enterococcus faecalis Biofilm and Inhibits Its Growth on the Surface of Chicken Meat.Viruses. 2023 May 20;15(5):1208. doi: 10.3390/v15051208. Viruses. 2023. PMID: 37243294 Free PMC article.
References
-
- Lima-Mendez G, Toussaint A, Leplae R (2007) Analysis of the phage sequence space: the benefit of structured information. Virology 365: 241–249. - PubMed
-
- Hendrix RW (2003) Bacteriophage genomics. Curr Opin Microbiol 6: 506–511. - PubMed
-
- Twort A (1993) In focus, out of step: a biography of Frederick William Twort F.R.S., 1877–1950. Phoenix Mill; Dover, NH: A. Sutton. xi, 40 p.
-
- dHerelle F (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. C R Acad Sci Paris 165: 373–375.
-
- Debarbieux L (2008) Experimental phage therapy in the beginning of the 21st century. Med Mal Infect 38: 421–425. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
