Augmented anticancer activity of a targeted, intracellularly activatable, theranostic nanomedicine based on fluorescent and radiolabeled, methotrexate-folic Acid-multiwalled carbon nanotube conjugate

Mol Pharm. 2013 Jul 1;10(7):2543-57. doi: 10.1021/mp300701e. Epub 2013 May 28.

Abstract

The present study reports the design, synthesis, and biological evaluation of a novel, intravenously injectable, theranostic prodrug based on multiwalled carbon nanotubes (MWCNTs) concomitantly decorated with a fluorochrome (Alexa-fluor, AF488/647), radionucleide (Technitium-99m), tumor-targeting module (folic acid, FA), and anticancer agent (methotrexate, MTX). Specifically, MTX was conjugated to MWCNTs via a serum-stable yet intracellularly hydrolyzable ester linkage to ensure minimum drug loss in circulation. Cell uptake studies corroborated the selective internalization of AF-FA-MTX-MWCNTs (1) by folate receptor (FR) positive human lung (A549) and breast (MCF 7) cancer cells through FR mediated endocytosis. Lysosomal trafficking of 1 enabled the conjugate to exert higher anticancer activity as compared to its nontargeted counterpart that was mainly restricted to cytoplasm. Tumor-specific accumulation of 1 in Ehlrich Ascites Tumor (EAT) xenografted mice was almost 19 and 8.6 times higher than free MTX and FA-deprived MWCNTs. Subsequently, the conjugate 1 was shown to arrest tumor growth more effectively in chemically breast tumor induced rats, when compared to either free MTX or nontargeted controls. Interestingly, the anticancer activities of the ester-linked CNT-MTX conjugates (including the one deprived of FA) were significantly higher than their amide-linked counterpart, suggesting that cleavability of linkers between drug and multifunctional nanotubes critically influence their therapeutic performance. The results were also supported by in silico docking and ligand similarity analysis. Toxicity studies in mice confirmed that all CNT-MTX conjugates were devoid of any perceivable hepatotoxicity, cardiotoxicity, and nephrotoxicity. Overall, the delivery property of MWCNTs, high tumor binding avidity of FA, optical detectability of AF fluorochromes, and radio-traceability of (99m)Tc could be successfully integrated and partitioned on a single CNT-platform to augment the therapeutic efficacy of MTX against FR overexpressing cancer cells while allowing a real-time monitoring of treatment response through multimodal imaging.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Drug Delivery Systems / methods*
  • Endocytosis / physiology
  • Folic Acid / chemistry*
  • Humans
  • Methotrexate / chemistry*
  • Nanomedicine / methods*
  • Nanotubes, Carbon / chemistry*

Substances

  • Nanotubes, Carbon
  • Folic Acid
  • Methotrexate