Condensin and the spindle midzone prevent cytokinesis failure induced by chromatin bridges in C. elegans embryos

Curr Biol. 2013 Jun 3;23(11):937-46. doi: 10.1016/j.cub.2013.04.028. Epub 2013 May 16.

Abstract

Background: During cell division, chromosomes must clear the path of the cleavage furrow before the onset of cytokinesis. The abscission checkpoint in mammalian cells stabilizes the cleavage furrow in the presence of a chromatin obstruction. This provides time to resolve the obstruction before the cleavage furrow regresses or breaks the chromosomes, preventing aneuploidy or DNA damage. Two unanswered questions in the proposed mechanistic pathway of the abscission checkpoint concern factors involved in (1) resolving the obstructions and (2) coordinating obstruction resolution with the delay in cytokinesis.

Results: We found that the one-cell and two-cell C. elegans embryos suppress furrow regression following depletion of essential chromosome-segregation factors: topoisomerase II(TOP-2), CENP-A(HCP-3), cohesin, and to a lesser degree, condensin. Chromatin obstructions activated Aurora B(AIR-2) at the spindle midzone, which is needed for the abscission checkpoint in other systems. Condensin I, but not condensin II, localizes to the spindle midzone in anaphase and to the midbody during normal cytokinesis. Interestingly, condensin I is enriched on chromatin bridges and near the midzone/midbody in an AIR-2-dependent manner. Disruption of AIR-2, the spindle midzone, or condensin leads to cytokinesis failure in a chromatin-obstruction-dependent manner. Examination of the condensin-deficient embryos uncovered defects in both the resolution of the chromatin obstructions and the maintenance of the stable cleavage furrow.

Conclusions: We postulate that condensin I is recruited by Aurora B(AIR-2) to aid in the resolution of chromatin obstructions and also helps generate a signal to maintain the delay in cytokinesis.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adenosine Triphosphatases / genetics*
  • Adenosine Triphosphatases / metabolism
  • Animals
  • Aurora Kinase B / genetics*
  • Aurora Kinase B / metabolism
  • Caenorhabditis elegans / cytology*
  • Caenorhabditis elegans / embryology*
  • Caenorhabditis elegans / genetics
  • Caenorhabditis elegans / metabolism
  • Caenorhabditis elegans Proteins / genetics*
  • Caenorhabditis elegans Proteins / metabolism
  • Chromatin / metabolism
  • Cleavage Stage, Ovum / metabolism
  • Cytokinesis*
  • DNA-Binding Proteins / genetics*
  • DNA-Binding Proteins / metabolism
  • Embryo, Nonmammalian / cytology
  • Embryo, Nonmammalian / embryology
  • Embryo, Nonmammalian / metabolism
  • Microscopy, Fluorescence
  • Multiprotein Complexes / genetics*
  • Multiprotein Complexes / metabolism
  • Spindle Apparatus / metabolism
  • Time Factors

Substances

  • Caenorhabditis elegans Proteins
  • Chromatin
  • DNA-Binding Proteins
  • Multiprotein Complexes
  • condensin complexes
  • Aurora Kinase B
  • air-2 protein, C elegans
  • Adenosine Triphosphatases