Background: Remote magnetic navigation-guided ablation with 3-dimensional (3D)-image integration could provide maximum benefit in patients with complex anatomy. We reviewed supraventricular tachycardia (SVT) ablation in adult patients with congenital heart disease to assess the contribution of these technologies.
Methods and results: One hundred fifty-four SVT ablation procedures (228 SVTs) using a 3D-electroanatomic mapping system in 116 adult patients with congenital heart disease (mean age, 41; 76 male) were classified into 3 groups: Group A, manual mapping/ablation (n=60 procedures); Group B, remote magnetic navigation-guided mapping/ablation with normal femoral vein access (49); and Group C, remote magnetic navigation-guided mapping/ablation with difficult access (45). Group A included simple anomalies with less SVTs. Group B comprised predominantly Fontan patients with more SVTs. Group C included more complex defects, such as intra-atrial baffle or interrupted inferior venous access, in which retrograde aortic and superior venous accesses were used exclusively with more frequent use of image integration (97.8%; P<0.001). Acute success was 91.5%, 83.7%, and 82.2%, respectively (P=0.370). In group C, fluoroscopy time was the shortest (median, 4.2 min; P<0.001) despite the longer procedure duration (median, 253 min; P<0.001). SVTs free rates were 80.4%, 82.4%, and 75.8%, respectively (P=0.787) during a mean 20-months follow-up period.
Conclusions: The combination of remote magnetic navigation, 3D-image integration, and electroanatomic mapping system facilitated safe and feasible ablation with very low fluoroscopy exposure even in patients with complex anomalies.
Keywords: ablation; congenital heart disease; mapping; tachycardia, supraventricular.