Automated analysis of diabetic retinopathy images: principles, recent developments, and emerging trends
- PMID: 23686810
- DOI: 10.1007/s11892-013-0393-9
Automated analysis of diabetic retinopathy images: principles, recent developments, and emerging trends
Abstract
Diabetic retinopathy (DR) is a vision-threatening complication of diabetes. Timely diagnosis and intervention are essential for treatment that reduces the risk of vision loss. A good color retinal (fundus) photograph can be used as a surrogate for face-to-face evaluation of DR. The use of computers to assist or fully automate DR evaluation from retinal images has been studied for many years. Early work showed promising results for algorithms in detecting and classifying DR pathology. Newer techniques include those that adapt machine learning technology to DR image analysis. Challenges remain, however, that must be overcome before fully automatic DR detection and analysis systems become practical clinical tools.
Similar articles
-
Automated Diabetic Retinopathy Screening and Monitoring Using Retinal Fundus Image Analysis.J Diabetes Sci Technol. 2016 Feb 16;10(2):254-61. doi: 10.1177/1932296816628546. J Diabetes Sci Technol. 2016. PMID: 26888972 Free PMC article.
-
Retinal images benchmark for the detection of diabetic retinopathy and clinically significant macular edema (CSME).Biomed Tech (Berl). 2019 May 27;64(3):297-307. doi: 10.1515/bmt-2018-0098. Biomed Tech (Berl). 2019. PMID: 30055096
-
Automated lesion detectors in retinal fundus images.Comput Biol Med. 2015 Nov 1;66:47-65. doi: 10.1016/j.compbiomed.2015.08.008. Epub 2015 Aug 18. Comput Biol Med. 2015. PMID: 26378502
-
Automated detection of diabetic retinopathy in retinal images.Indian J Ophthalmol. 2016 Jan;64(1):26-32. doi: 10.4103/0301-4738.178140. Indian J Ophthalmol. 2016. PMID: 26953020 Free PMC article. Review.
-
Survey on recent developments in automatic detection of diabetic retinopathy.J Fr Ophtalmol. 2021 Mar;44(3):420-440. doi: 10.1016/j.jfo.2020.08.009. Epub 2021 Jan 30. J Fr Ophtalmol. 2021. PMID: 33526268 Review.
Cited by
-
Detection of diabetic retinopathy using a fusion of textural and ridgelet features of retinal images and sequential minimal optimization classifier.PeerJ Comput Sci. 2021 May 7;7:e456. doi: 10.7717/peerj-cs.456. eCollection 2021. PeerJ Comput Sci. 2021. PMID: 34013026 Free PMC article.
-
The Evolution of Diabetic Retinopathy Screening Programmes: A Chronology of Retinal Photography from 35 mm Slides to Artificial Intelligence.Clin Ophthalmol. 2020 Jul 20;14:2021-2035. doi: 10.2147/OPTH.S261629. eCollection 2020. Clin Ophthalmol. 2020. PMID: 32764868 Free PMC article. Review.
-
MIRank-KNN: multiple-instance retrieval of clinically relevant diabetic retinopathy images.J Med Imaging (Bellingham). 2017 Jul;4(3):034003. doi: 10.1117/1.JMI.4.3.034003. Epub 2017 Sep 1. J Med Imaging (Bellingham). 2017. PMID: 28894762 Free PMC article.
-
Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features.Med Biol Eng Comput. 2017 Nov;55(11):1959-1974. doi: 10.1007/s11517-017-1638-6. Epub 2017 Mar 28. Med Biol Eng Comput. 2017. PMID: 28353133
-
Machine Learning and Data Mining Methods in Diabetes Research.Comput Struct Biotechnol J. 2017 Jan 8;15:104-116. doi: 10.1016/j.csbj.2016.12.005. eCollection 2017. Comput Struct Biotechnol J. 2017. PMID: 28138367 Free PMC article. Review.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
