Startup and long-term performance of biotrickling filters packed with polyurethane foam and poplar wood chips treating a mixture of ethylmercaptan, H2S, and NH3

J Air Waste Manag Assoc. 2013 Apr;63(4):462-71. doi: 10.1080/10962247.2013.763305.

Abstract

Treatment of a mixture of NH3, H2S, and ethylmercaptan (EM) was investigated for more than 15 months in two biotrickling filters packed with poplar wood chips and polyurethane foam. Inlet loads ranging from 5 to 10 g N-NH3 m-3 hr-1, from 5 to 16 g S-H2S m-3 hr-1, and from 0 to 5 g EM m-3 hr-1 were applied. During startup, the biotrickling filter packed with polyurethane foam was re-inoculated due to reduced biomass retention as well as a stronger effect of nitrogen compounds inhibition compared with the biotrickling filter packed with poplar wood. Accurate pH control between 7 and 7.5 favored pollutants abatement. In the long run, complete NH3 removal in the gas phase was achieved in both reactors, while H2S removal efficiencies exceeded 90%. EM abatement was significantly different in both reactors. A systematically lower elimination capacity was found in the polyurethane foam bioreactor. N fractions in the liquid phase proved that high nitrification rates were reached throughout steady-state operation in both bioreactors. CO2 production showed the extent of the organic packing material degradation, which allowed estimating its service lifetime in around 2 years. In the long run, the bioreactor packed with the organic packing material had a lower stability. However, an economic analysis indicated that poplar wood chips are a competitive alternative to inorganic packing materials in biotrickling filters.

Implications: We provide new insights in the use of organic packing materials in biotrickling filters for the treatment of H2S, NH3, and mercaptans and compare them with polyurethane foam, a packing commonly used in biotrickling filters. We found interesting features related with the startup of the reactors and parameterized both the performance under steady-state conditions and the influence of the gas contact time. We provide relevant conclusions in the profitability of organic packing materials under a biotrickling filter configuration, which is infrequent but proven reliable from our research results. The report is useful to designers and users of this technology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ammonia / chemistry*
  • Bioreactors
  • Filtration / instrumentation*
  • Filtration / methods*
  • Polyurethanes / chemistry*
  • Populus
  • Sulfhydryl Compounds / chemistry*
  • Wood*

Substances

  • Polyurethanes
  • Sulfhydryl Compounds
  • Ammonia
  • ethanethiol