MicroRNAs linking inflamm-aging, cellular senescence and cancer

Ageing Res Rev. 2013 Sep;12(4):1056-68. doi: 10.1016/j.arr.2013.05.001. Epub 2013 May 17.


Epidemiological and experimental data demonstrate a strong correlation between age-related chronic inflammation (inflamm-aging) and cancer development. However, a comprehensive approach is needed to clarify the underlying molecular mechanisms. Chronic inflammation has mainly been attributed to continuous immune cells activation, but the cellular senescence process, which may involve acquisition of a senescence-associated secretory phenotype (SASP), can be another important contributor, especially in the elderly. MicroRNAs (miRs), a class of molecules involved in gene expression regulation, are emerging as modulators of some pathways, including NF-κB, mTOR, sirtuins, TGF-β and Wnt, that may be related to inflammation, cellular senescence and age-related diseases, cancer included. Interestingly, cancer development is largely avoided or delayed in centenarians, where changes in some miRs are found in plasma and leukocytes. We identified miRs that can be considered as senescence-associated (SA-miRs), inflammation-associated (inflamma-miRs) and cancer-associated (onco-miRs). Here we review recent findings concerning three of them, miR-21, -126 and -146a, which target mRNAs belonging to the NF-κB pathway; we discuss their ability to link cellular senescence, inflamm-aging and cancer and their changes in centenarians, and provide an update on the possibility of using miRs to block accumulation of senescent cells to prevent formation of a microenvironment favoring cancer development and progression.

Keywords: Cancer; Cellular senescence; Centenarians; Inflamm-aging; MicroRNA; NF-κB.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Aging / genetics
  • Aging / metabolism*
  • Aging / pathology
  • Animals
  • Cellular Senescence / physiology*
  • Humans
  • Inflammation / genetics
  • Inflammation / metabolism
  • Inflammation / pathology
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • Neoplasms / genetics
  • Neoplasms / metabolism*
  • Neoplasms / pathology
  • Signal Transduction / genetics


  • MicroRNAs