Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data
- PMID: 23702413
- PMCID: PMC3816382
- DOI: 10.1016/j.neuroimage.2013.05.049
Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data
Erratum in
- Neuroimage. 2015 Mar;108:123
Abstract
We present an extension of the Linear Mixed Effects (LME) modeling approach to be applied to the mass-univariate analysis of longitudinal neuroimaging (LNI) data. The proposed method, called spatiotemporal LME or ST-LME, builds on the flexible LME framework and exploits the spatial structure in image data. We instantiated ST-LME for the analysis of cortical surface measurements (e.g. thickness) computed by FreeSurfer, a widely-used brain Magnetic Resonance Image (MRI) analysis software package. We validate the proposed ST-LME method and provide a quantitative and objective empirical comparison with two popular alternative methods, using two brain MRI datasets obtained from the Alzheimer's disease neuroimaging initiative (ADNI) and Open Access Series of Imaging Studies (OASIS). Our experiments revealed that ST-LME offers a dramatic gain in statistical power and repeatability of findings, while providing good control of the false positive rate.
Keywords: Linear Mixed Effects models; Longitudinal studies; Mass-univariate analysis; Statistical analysis.
Copyright © 2013 Elsevier Inc. All rights reserved.
Figures
Similar articles
-
Statistical analysis of longitudinal neuroimage data with Linear Mixed Effects models.Neuroimage. 2013 Feb 1;66:249-60. doi: 10.1016/j.neuroimage.2012.10.065. Epub 2012 Oct 30. Neuroimage. 2013. PMID: 23123680 Free PMC article.
-
Event time analysis of longitudinal neuroimage data.Neuroimage. 2014 Aug 15;97:9-18. doi: 10.1016/j.neuroimage.2014.04.015. Epub 2014 Apr 13. Neuroimage. 2014. PMID: 24736175 Free PMC article.
-
Permutation-based inference for spatially localized signals in longitudinal MRI data.Neuroimage. 2021 Oct 1;239:118312. doi: 10.1016/j.neuroimage.2021.118312. Epub 2021 Jun 25. Neuroimage. 2021. PMID: 34182099
-
Longitudinal Neuroimaging Hippocampal Markers for Diagnosing Alzheimer's Disease.Neuroinformatics. 2019 Jan;17(1):43-61. doi: 10.1007/s12021-018-9380-2. Neuroinformatics. 2019. PMID: 29785624
-
Modeling and inference of multisubject fMRI data.IEEE Eng Med Biol Mag. 2006 Mar-Apr;25(2):42-51. doi: 10.1109/memb.2006.1607668. IEEE Eng Med Biol Mag. 2006. PMID: 16568936 Review. No abstract available.
Cited by
-
BLMM: Parallelised computing for big linear mixed models.Neuroimage. 2022 Dec 1;264:119729. doi: 10.1016/j.neuroimage.2022.119729. Epub 2022 Nov 4. Neuroimage. 2022. PMID: 36336314 Free PMC article.
-
SAN: mitigating spatial covariance heterogeneity in cortical thickness data collected from multiple scanners or sites.bioRxiv [Preprint]. 2024 Mar 11:2023.12.04.569619. doi: 10.1101/2023.12.04.569619. bioRxiv. 2024. Update in: Hum Brain Mapp. 2024 May;45(7):e26692. doi: 10.1002/hbm.26692 PMID: 38105933 Free PMC article. Updated. Preprint.
-
Applying joint graph embedding to study Alzheimer's neurodegeneration patterns in volumetric data.bioRxiv [Preprint]. 2023 Jan 30:2023.01.11.523671. doi: 10.1101/2023.01.11.523671. bioRxiv. 2023. Update in: Neuroinformatics. 2023 Jul;21(3):601-614. doi: 10.1007/s12021-023-09634-6 PMID: 36712104 Free PMC article. Updated. Preprint.
-
Cortical Thickness Changes After Computerized Working Memory Training in Patients With Mild Cognitive Impairment.Front Aging Neurosci. 2022 Apr 4;14:796110. doi: 10.3389/fnagi.2022.796110. eCollection 2022. Front Aging Neurosci. 2022. PMID: 35444526 Free PMC article.
-
Accelerated cortical thinning precedes and predicts conversion to psychosis: The NAPLS3 longitudinal study of youth at clinical high-risk.Mol Psychiatry. 2023 Mar;28(3):1182-1189. doi: 10.1038/s41380-022-01870-7. Epub 2022 Nov 25. Mol Psychiatry. 2023. PMID: 36434057 Free PMC article.
References
-
- Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93:491–507.
-
- Bernal-Rusiel JL, Atienza M, Cantero JL. Determining the optimal level of smoothing in cortical thickness analysis: A hierarchical approach based on sequential statistical thresholding. Neuroimage. 2010;52:158–171. - PubMed
-
- Blockx I, Van Camp N, Verhoye M, Boisgard R, Dubois A, Jego B, Jonckers E, Raber K, Siquier K, Kuhnast B, Dolle F, Nguyen HP, Von Horsten S, Tavitian B, Van der Linden A. Genotype specific age related changes in a transgenic rat model of Huntington’s disease. Neuroimage. 2011;58:1006–1016. - PubMed
Publication types
MeSH terms
Grants and funding
- R01 NS052585-01/NS/NINDS NIH HHS/United States
- R01-HD071664/HD/NICHD NIH HHS/United States
- P01 AG003991/AG/NIA NIH HHS/United States
- U01 AG024904/AG/NIA NIH HHS/United States
- 5P01NS058793-03/NS/NINDS NIH HHS/United States
- 1K25EB013649-01/EB/NIBIB NIH HHS/United States
- AG022381/AG/NIA NIH HHS/United States
- R01 AG008122/AG/NIA NIH HHS/United States
- 1R01NS070963/NS/NINDS NIH HHS/United States
- 1S10RR023401/RR/NCRR NIH HHS/United States
- 5U01-MH093765/MH/NIMH NIH HHS/United States
- RC1 AT005728-01/AT/NCCIH NIH HHS/United States
- KL2 RR025757/RR/NCRR NIH HHS/United States
- P41-RR14075/RR/NCRR NIH HHS/United States
- K25 EB013649/EB/NIBIB NIH HHS/United States
- R01EB006758/EB/NIBIB NIH HHS/United States
- R01 AG016495/AG/NIA NIH HHS/United States
- 2R01NS042861-06A1/NS/NINDS NIH HHS/United States
- 1S10RR019307/RR/NCRR NIH HHS/United States
- 1S10RR023043/RR/NCRR NIH HHS/United States
- 1R21NS072652-01/NS/NINDS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
