Synaptic Zn2+ inhibits neurotransmitter release by promoting endocannabinoid synthesis
- PMID: 23719795
- PMCID: PMC3733213
- DOI: 10.1523/JNEUROSCI.0237-13.2013
Synaptic Zn2+ inhibits neurotransmitter release by promoting endocannabinoid synthesis
Erratum in
- J Neurosci. 2014 May 21;34(21):7394
Abstract
Although it is well established that many glutamatergic neurons sequester Zn(2+) within their synaptic vesicles, the physiological significance of synaptic Zn(2+) remains poorly understood. In experiments performed in a Zn(2+)-enriched auditory brainstem nucleus--the dorsal cochlear nucleus--we discovered that synaptic Zn(2+) and GPR39, a putative metabotropic Zn(2+)-sensing receptor (mZnR), are necessary for triggering the synthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). The postsynaptic production of 2-AG, in turn, inhibits presynaptic probability of neurotransmitter release, thus shaping synaptic strength and short-term synaptic plasticity. Zn(2+)-induced inhibition of transmitter release is absent in mutant mice that lack either vesicular Zn(2+) or the mZnR. Moreover, mass spectrometry measurements of 2-AG levels reveal that Zn(2+)-mediated initiation of 2-AG synthesis is absent in mice lacking the mZnR. We reveal a previously unknown action of synaptic Zn(2+): synaptic Zn(2+) inhibits glutamate release by promoting 2-AG synthesis.
Figures
Similar articles
-
The endocannabinoid 2-arachidonoylglycerol inhibits long-term potentiation of glutamatergic synapses onto ventral tegmental area dopamine neurons in mice.Eur J Neurosci. 2011 May;33(10):1751-60. doi: 10.1111/j.1460-9568.2011.07648.x. Epub 2011 Mar 17. Eur J Neurosci. 2011. PMID: 21410793
-
Endocannabinoid-mediated retrograde modulation of synaptic transmission.Curr Opin Neurobiol. 2014 Dec;29:1-8. doi: 10.1016/j.conb.2014.03.017. Epub 2014 Apr 18. Curr Opin Neurobiol. 2014. PMID: 24747340 Review.
-
Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase Cbeta4 signaling cascade in the cerebellum.J Neurosci. 2005 Jul 20;25(29):6826-35. doi: 10.1523/JNEUROSCI.0945-05.2005. J Neurosci. 2005. PMID: 16033892 Free PMC article.
-
Identification of the sites of 2-arachidonoylglycerol synthesis and action imply retrograde endocannabinoid signaling at both GABAergic and glutamatergic synapses in the ventral tegmental area.Neuropharmacology. 2008 Jan;54(1):95-107. doi: 10.1016/j.neuropharm.2007.05.028. Epub 2007 Jun 22. Neuropharmacology. 2008. PMID: 17655884 Free PMC article.
-
The serine hydrolases MAGL, ABHD6 and ABHD12 as guardians of 2-arachidonoylglycerol signalling through cannabinoid receptors.Acta Physiol (Oxf). 2012 Feb;204(2):267-76. doi: 10.1111/j.1748-1716.2011.02280.x. Epub 2011 Apr 22. Acta Physiol (Oxf). 2012. PMID: 21418147 Free PMC article. Review.
Cited by
-
GPR39 Knockout Worsens Microcirculatory Response to Experimental Stroke in a Sex-Dependent Manner.Transl Stroke Res. 2023 Oct;14(5):766-775. doi: 10.1007/s12975-022-01093-6. Epub 2022 Oct 1. Transl Stroke Res. 2023. PMID: 36181628 Free PMC article.
-
The role of GPR39 zinc receptor in the modulation of glutamatergic and GABAergic transmission.Pharmacol Rep. 2023 Jun;75(3):609-622. doi: 10.1007/s43440-023-00478-0. Epub 2023 Mar 30. Pharmacol Rep. 2023. PMID: 36997827 Free PMC article.
-
Zinc and Central Nervous System Disorders.Nutrients. 2023 Apr 29;15(9):2140. doi: 10.3390/nu15092140. Nutrients. 2023. PMID: 37432243 Free PMC article. Review.
-
The Zinc-Sensing Receptor GPR39 in Physiology and as a Pharmacological Target.Int J Mol Sci. 2021 Apr 8;22(8):3872. doi: 10.3390/ijms22083872. Int J Mol Sci. 2021. PMID: 33918078 Free PMC article. Review.
-
The role of brain-derived neurotrophic factor in comorbid depression: possible linkage with steroid hormones, cytokines, and nutrition.Front Psychiatry. 2014 Sep 26;5:136. doi: 10.3389/fpsyt.2014.00136. eCollection 2014. Front Psychiatry. 2014. PMID: 25309465 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
- R01 NS043277/NS/NINDS NIH HHS/United States
- AT006822/AT/NCCIH NIH HHS/United States
- R56 NS043277/NS/NINDS NIH HHS/United States
- P30 DK072506/DK/NIDDK NIH HHS/United States
- R01 DC007905/DC/NIDCD NIH HHS/United States
- HL64937/HL/NHLBI NIH HHS/United States
- F32DC011664/DC/NIDCD NIH HHS/United States
- DK072506/DK/NIDDK NIH HHS/United States
- F32 DC011664/DC/NIDCD NIH HHS/United States
- P01 HL103455/HL/NHLBI NIH HHS/United States
- R37 HL058115/HL/NHLBI NIH HHS/United States
- R01 HL058115/HL/NHLBI NIH HHS/United States
- R01 AT006822/AT/NCCIH NIH HHS/United States
- R01 HL064937/HL/NHLBI NIH HHS/United States
- HL103455/HL/NHLBI NIH HHS/United States
- NS043277/NS/NINDS NIH HHS/United States
- HL058115/HL/NHLBI NIH HHS/United States
- DC007905/DC/NIDCD NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases