The genetic architecture of methotrexate toxicity is similar in Drosophila melanogaster and humans

G3 (Bethesda). 2013 Aug 7;3(8):1301-10. doi: 10.1534/g3.113.006619.


The severity of the toxic side effects of chemotherapy varies among patients, and much of this variation is likely genetically based. Here, we use the model system Drosophila melanogaster to genetically dissect the toxicity of methotrexate (MTX), a drug used primarily to treat childhood acute lymphoblastic leukemia and rheumatoid arthritis. We use the Drosophila Synthetic Population Resource, a panel of recombinant inbred lines derived from a multiparent advanced intercross, and quantify MTX toxicity as a reduction in female fecundity. We identify three quantitative trait loci (QTL) affecting MTX toxicity; two colocalize with the fly orthologs of human genes believed to mediate MTX toxicity and one is a novel MTX toxicity gene with a human ortholog. A fourth suggestive QTL spans a centromere. Local single-marker association scans of candidate gene exons fail to implicate amino acid variants as the causative single-nucleotide polymorphisms, and we therefore hypothesize the causative variation is regulatory. In addition, the effects at our mapped QTL do not conform to a simple biallelic pattern, suggesting multiple causative factors underlie the QTL mapping results. Consistent with this observation, no single single-nucleotide polymorphism located in or near a candidate gene can explain the QTL mapping signal. Overall, our results validate D. melanogaster as a model for uncovering the genetic basis of chemotoxicity and suggest the genetic basis of MTX toxicity is due to a handful of genes each harboring multiple segregating regulatory factors.

Keywords: Drosophila synthetic population resource; chemotoxicity; methotrexate; pharmacogenomics; quantitative trait loci.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Centromere / drug effects
  • Centromere / genetics
  • Chromosome Mapping
  • DNA Transposable Elements / genetics
  • Drosophila Proteins / genetics
  • Drosophila melanogaster / drug effects*
  • Drosophila melanogaster / genetics
  • Female
  • Fertility / drug effects*
  • Glutathione Peroxidase / genetics
  • Humans
  • Methotrexate / toxicity*
  • Models, Genetic
  • Phenotype
  • Polymorphism, Single Nucleotide
  • Quantitative Trait Loci


  • DNA Transposable Elements
  • Drosophila Proteins
  • Glutathione Peroxidase
  • Methotrexate