Linkage disequilibrium and haplotype block structure in six commercial pig lines

J Anim Sci. 2013 Aug;91(8):3493-501. doi: 10.2527/jas.2012-6052. Epub 2013 Jun 4.


Linkage disequilibrium (LD) across the genome is critical information for association studies and genomic selection because it determines the number of SNP that should be used for a successful association analysis and genomic selection. Linkage disequilibrium also influences the accuracy of genomic breeding values. Some studies have demonstrated that SNP in strong LD are organized into discrete blocks of haplotypes, which are separated by possibly hot spots of recombination. To reduce the number of markers needed to be genotyped for association mapping, a set of SNP can be selected that labels all haplotype blocks. We estimated the LD, calculated the average haplotype block size for 6 pig lines, and compared the block size between lines. Six commercial pig lines were genotyped using the Illumina PorcineSNP60 (number of markers M = 62,163) Genotyping BeadChip (Illumina Inc.); on average, a panel of 37,623 SNP with an average minor allelic frequency (MAF) of 0.283 was included in the analysis. The LD declined as a function of distance. All pig lines had an average r(2) above 0.3 for markers 100 to 150 apart. The estimated average block size was 394.885 kb, and blocks between 100 and 400 kb were most prominent (49.96%) in all lines. These results showed that the extent of LD in pigs is much larger than in the cattle population, in accordance with the genetic map length of pigs, which is much shorter than cattle. The evaluated lines have 2,640 to 3,037 blocks, covering 45% of the pig genome, on average. Differences in haplotype block size between lines were observed for some chromosomes (i.e., SSC 3, 5, 7, 13, 14, and 18), which provide a direction for future studies of haplotype block conservation or divergence across lines.

MeSH terms

  • Animals
  • Breeding
  • Female
  • Genomics
  • Haplotypes*
  • Linkage Disequilibrium*
  • Male
  • Polymorphism, Single Nucleotide
  • Swine / genetics*