A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast
- PMID: 23748379
- DOI: 10.1038/nsmb.2592
A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast
Abstract
Transcription termination is essential to generate functional RNAs and to prevent disruptive polymerase collisions resulting from concurrent transcription. The yeast Sen1p helicase is involved in termination of most noncoding RNAs transcribed by RNA polymerase II (RNAPII). However, the mechanism of termination and the role of this protein have remained enigmatic. Here we address the mechanism of Sen1p-dependent termination by using a highly purified in vitro system. We show that Sen1p is the key enzyme of the termination reaction and reveal features of the termination mechanism. Like the bacterial termination factor Rho, Sen1p recognizes the nascent RNA and hydrolyzes ATP to dissociate the elongation complex. Sen1p-dependent termination is highly specific and, notably, does not require the C-terminal domain of RNAPII. We also show that termination is inhibited by RNA-DNA hybrids. Our results elucidate the role of Sen1p in controlling pervasive transcription.
Similar articles
-
Multiple protein/protein and protein/RNA interactions suggest roles for yeast DNA/RNA helicase Sen1p in transcription, transcription-coupled DNA repair and RNA processing.Nucleic Acids Res. 2004 Apr 30;32(8):2441-52. doi: 10.1093/nar/gkh561. Print 2004. Nucleic Acids Res. 2004. PMID: 15121901 Free PMC article.
-
Biochemical characterization of the helicase Sen1 provides new insights into the mechanisms of non-coding transcription termination.Nucleic Acids Res. 2017 Feb 17;45(3):1355-1370. doi: 10.1093/nar/gkw1230. Nucleic Acids Res. 2017. PMID: 28180347 Free PMC article.
-
Sen1p performs two genetically separable functions in transcription and processing of U5 small nuclear RNA in Saccharomyces cerevisiae.Genetics. 2010 Jan;184(1):107-18. doi: 10.1534/genetics.109.110031. Epub 2009 Nov 2. Genetics. 2010. PMID: 19884310 Free PMC article.
-
Transcription termination and the control of the transcriptome: why, where and how to stop.Nat Rev Mol Cell Biol. 2015 Mar;16(3):190-202. doi: 10.1038/nrm3943. Epub 2015 Feb 4. Nat Rev Mol Cell Biol. 2015. PMID: 25650800 Review.
-
Non-coding transcription by RNA polymerase II in yeast: Hasard or nécessité?Biochimie. 2015 Oct;117:28-36. doi: 10.1016/j.biochi.2015.04.020. Epub 2015 May 6. Biochimie. 2015. PMID: 25956976 Review.
Cited by
-
Senataxin deficiency disrupts proteostasis through nucleolar ncRNA-driven protein aggregation.J Cell Biol. 2024 Jul 1;223(7):e202309036. doi: 10.1083/jcb.202309036. Epub 2024 May 8. J Cell Biol. 2024. PMID: 38717338 Free PMC article.
-
RNA polymerase II transcription elongation control.Chem Rev. 2013 Nov 13;113(11):8583-603. doi: 10.1021/cr400105n. Epub 2013 Aug 6. Chem Rev. 2013. PMID: 23919563 Free PMC article. Review. No abstract available.
-
Integrated genome and transcriptome analyses reveal the mechanism of genome instability in ataxia with oculomotor apraxia 2.Proc Natl Acad Sci U S A. 2022 Jan 25;119(4):e2114314119. doi: 10.1073/pnas.2114314119. Proc Natl Acad Sci U S A. 2022. PMID: 35042798 Free PMC article.
-
Molecular basis for coordinating transcription termination with noncoding RNA degradation.Mol Cell. 2014 Aug 7;55(3):467-81. doi: 10.1016/j.molcel.2014.05.031. Epub 2014 Jul 24. Mol Cell. 2014. PMID: 25066235 Free PMC article.
-
Noncoding RNA Surveillance: The Ends Justify the Means.Chem Rev. 2018 Apr 25;118(8):4422-4447. doi: 10.1021/acs.chemrev.7b00462. Epub 2017 Oct 12. Chem Rev. 2018. PMID: 29023106 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
