The GJB2 gene is located on chromosome 13q12 and it encodes the connexin 26, a transmembrane protein involved in cell-cell attachment of almost all tissues. GJB2 mutations cause autosomal recessive (DFNB1) and sometimes dominant (DFNA3) non-syndromic sensorineural hearing loss. Moreover, it has been demonstrated that connexins are involved in regulation of growth and differentiation of epidermal tissues. Hence, mutations in GJB2 gene, which is responsible for non-syndromic deafness, may be associated with an abnormal skin and hair phenotype. We analyzed hair samples from 96 subjects: a study group of 42 patients with hearing impairments of genetic origin (38 with a non-syndromic form, 4 with a syndromic form), and a control group including 54 people, i.e. 43 patients with other, non-genetic hearing impairments and 11 healthy volunteers aged up to 10 years old. The surface structure of 49 hair samples was normal, whereas in 45 cases it was altered, with a damaged appearance. Two hair samples were considered unclassifiable: one from the patient heterozygotic for the pendrin mutation (Fig. 2C), the other from a patient from Ghana with a R134W mutation (Fig. 2D). Among the 43 altered hair samples, 31 belonged to patients with connexin mutations and the other 12 came from patients without connexin mutations.
Keywords: Congenital hearing loss; Connexin 26; GJB2 gene; Gap junction; Hair phenotype; Non-syndromic hearing loss.
Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.