Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation
- PMID: 23754282
- PMCID: PMC3724655
- DOI: 10.1074/jbc.M113.467530
Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation
Abstract
PINK1 and PARKIN are causal genes for autosomal recessive familial Parkinsonism. PINK1 is a mitochondrial Ser/Thr kinase, whereas Parkin functions as an E3 ubiquitin ligase. Under steady-state conditions, Parkin localizes to the cytoplasm where its E3 activity is repressed. A decrease in mitochondrial membrane potential triggers Parkin E3 activity and recruits it to depolarized mitochondria for ubiquitylation of mitochondrial substrates. The molecular basis for how the E3 activity of Parkin is re-established by mitochondrial damage has yet to be determined. Here we provide in vitro biochemical evidence for ubiquitin-thioester formation on Cys-431 of recombinant Parkin. We also report that Parkin forms a ubiquitin-ester following a decrease in mitochondrial membrane potential in cells, and that this event is essential for substrate ubiquitylation. Importantly, the Parkin RING2 domain acts as a transthiolation or acyl-transferring domain rather than an E2-recruiting domain. Furthermore, formation of the ubiquitin-ester depends on PINK1 phosphorylation of Parkin Ser-65. A phosphorylation-deficient mutation completely inhibited formation of the Parkin ubiquitin-ester intermediate, whereas phosphorylation mimics, such as Ser to Glu substitution, enabled partial formation of the intermediate irrespective of Ser-65 phosphorylation. We propose that PINK1-dependent phosphorylation of Parkin leads to the ubiquitin-ester transfer reaction of the RING2 domain, and that this is an essential step in Parkin activation.
Keywords: Mitochondria; Parkin; Pink1; RING Finger; Ubiquitin; Ubiquitin Ligase.
Figures
Similar articles
-
Ubiquitin is phosphorylated by PINK1 to activate parkin.Nature. 2014 Jun 5;510(7503):162-6. doi: 10.1038/nature13392. Epub 2014 Jun 4. Nature. 2014. PMID: 24784582
-
Parkin recruitment to impaired mitochondria for nonselective ubiquitylation is facilitated by MITOL.J Biol Chem. 2019 Jun 28;294(26):10300-10314. doi: 10.1074/jbc.RA118.006302. Epub 2019 May 20. J Biol Chem. 2019. PMID: 31110043 Free PMC article.
-
Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation.EMBO Rep. 2015 Aug;16(8):939-54. doi: 10.15252/embr.201540352. Epub 2015 Jun 25. EMBO Rep. 2015. PMID: 26116755 Free PMC article.
-
Molecular mechanisms underlying PINK1 and Parkin catalyzed ubiquitylation of substrates on damaged mitochondria.Biochim Biophys Acta. 2015 Oct;1853(10 Pt B):2791-6. doi: 10.1016/j.bbamcr.2015.02.009. Epub 2015 Feb 18. Biochim Biophys Acta. 2015. PMID: 25700839 Review.
-
PINK1/Parkin-mediated mitophagy in mammalian cells.Curr Opin Cell Biol. 2015 Apr;33:95-101. doi: 10.1016/j.ceb.2015.01.002. Epub 2015 Feb 17. Curr Opin Cell Biol. 2015. PMID: 25697963 Review.
Cited by
-
Mitochondrial protein quality control: the mechanisms guarding mitochondrial health.Antioxid Redox Signal. 2015 Apr 20;22(12):977-94. doi: 10.1089/ars.2014.6199. Epub 2015 Feb 11. Antioxid Redox Signal. 2015. PMID: 25546710 Free PMC article. Review.
-
The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease.Neuron. 2015 Jan 21;85(2):257-73. doi: 10.1016/j.neuron.2014.12.007. Neuron. 2015. PMID: 25611507 Free PMC article. Review.
-
Parkin-mediated ubiquitylation redistributes MITOL/March5 from mitochondria to peroxisomes.EMBO Rep. 2019 Dec 5;20(12):e47728. doi: 10.15252/embr.201947728. Epub 2019 Oct 10. EMBO Rep. 2019. PMID: 31602805 Free PMC article.
-
Mitochondrial quality control in the diabetic heart.J Mol Cell Cardiol. 2016 Jun;95:57-69. doi: 10.1016/j.yjmcc.2015.12.025. Epub 2015 Dec 29. J Mol Cell Cardiol. 2016. PMID: 26739215 Free PMC article. Review.
-
Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy.Autophagy. 2015;11(9):1484-98. doi: 10.1080/15548627.2015.1063763. Autophagy. 2015. PMID: 26101826 Free PMC article.
References
-
- Kitada T., Asakawa S., Hattori N., Matsumine H., Yamamura Y., Minoshima S., Yokochi M., Mizuno Y., Shimizu N. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 - PubMed
-
- Valente E. M., Abou-Sleiman P. M., Caputo V., Muqit M. M., Harvey K., Gispert S., Ali Z., Del Turco D., Bentivoglio A. R., Healy D. G., Albanese A., Nussbaum R., González-Maldonado R., Deller T., Salvi S., Cortelli P., Gilks W. P., Latchman D. S., Harvey R. J., Dallapiccola B., Auburger G., Wood N. W. (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 - PubMed
-
- Corti O., Lesage S., Brice A. (2011) What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol. Rev. 91, 1161–1218 - PubMed
-
- Imaizumi Y., Okada Y., Akamatsu W., Koike M., Kuzumaki N., Hayakawa H., Nihira T., Kobayashi T., Ohyama M., Sato S., Takanashi M., Funayama M., Hirayama A., Soga T., Hishiki T., Suematsu M., Yagi T., Ito D., Kosakai A., Hayashi K., Shouji M., Nakanishi A., Suzuki N., Mizuno Y., Mizushima N., Amagai M., Uchiyama Y., Mochizuki H., Hattori N., Okano H. (2012) Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Mol. Brain 5, 35. - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
