Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 30:4:138.
doi: 10.3389/fmicb.2013.00138. eCollection 2013.

The antibiotic resistance "mobilome": searching for the link between environment and clinic

Affiliations
Free PMC article

The antibiotic resistance "mobilome": searching for the link between environment and clinic

Julie A Perry et al. Front Microbiol. .
Free PMC article

Abstract

Antibiotic resistance is an ancient problem, owing to the co-evolution of antibiotic-producing and target organisms in the soil and other environments over millennia. The environmental "resistome" is the collection of all genes that directly or indirectly contribute to antibiotic resistance. Many of these resistance determinants originate in antibiotic-producing organisms (where they serve to mediate self-immunity), while others become resistance determinants only when mobilized and over-expressed in non-native hosts (like plasmid-encoded β-lactamases). The modern environmental resistome is under selective pressure from human activities such as agriculture, which may influence the composition of the local resistome and lead to gene transfer events. Beyond the environment, we are challenged in the clinic by the rise in both frequency and diversity of antibiotic resistant pathogens. We assume that clinical resistance originated in the environment, but few examples of direct gene exchange between the environmental resistome and the clinical resistome have been documented. Strong evidence exists to suggest that clinical aminoglycoside and vancomycin resistance enzymes, the extended-spectrum β-lactamase CTX-M and the quinolone resistance gene qnr have direct links to the environmental resistome. In this review, we highlight recent advances in our understanding of horizontal gene transfer of antibiotic resistance genes from the environment to the clinic. Improvements in sequencing technologies coupled with functional metagenomic studies have revealed previously underappreciated diversity in the environmental resistome, and also established novel genetic links to the clinic. Understanding mechanisms of gene exchange becomes vital in controlling the future dissemination of antibiotic resistance.

Keywords: antibiotic resistance; environmental resistome; evolution; horizontal gene transfer.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Allen H. K., Looft T., Bayles D. O., Humphrey S., Levine U. Y., Alt D., et al. (2011). Antibiotics in feed induce prophages in swine fecal microbiomes. MBio 2 e00260-11 10.1128/mBio.00260-11 - DOI - PMC - PubMed
    1. Amann R. I., Ludwig W., Schleifer K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59 143–169 - PMC - PubMed
    1. Aminov R. I. (2011). Horizontal gene exchange in environmental microbiota. Front. Microbiol. 2:158 10.3389/fmicb.2011.00158 - DOI - PMC - PubMed
    1. Aminov R. I., Mackie R. I. (2007). Evolution and ecology of antibiotic resistance genes. FEMS Microbiol. Lett. 271 147–161 - PubMed
    1. Avery O. T., Macleod C. M., Mccarty M. (1944). Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. J. Exp. Med. 79 137–158 10.1084/jem.79.2.137 - DOI - PMC - PubMed

LinkOut - more resources