Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;9(6):e1003090.
doi: 10.1371/journal.pcbi.1003090. Epub 2013 Jun 13.

Exploring volatile general anesthetic binding to a closed membrane-bound bacterial voltage-gated sodium channel via computation

Affiliations

Exploring volatile general anesthetic binding to a closed membrane-bound bacterial voltage-gated sodium channel via computation

S G Raju et al. PLoS Comput Biol. 2013.

Abstract

Despite the clinical ubiquity of anesthesia, the molecular basis of anesthetic action is poorly understood. Amongst the many molecular targets proposed to contribute to anesthetic effects, the voltage gated sodium channels (VGSCs) should also be considered relevant, as they have been shown to be sensitive to all general anesthetics tested thus far. However, binding sites for VGSCs have not been identified. Moreover, the mechanism of inhibition is still largely unknown. The recently reported atomic structures of several members of the bacterial VGSC family offer the opportunity to shed light on the mechanism of action of anesthetics on these important ion channels. To this end, we have performed a molecular dynamics "flooding" simulation on a membrane-bound structural model of the archetypal bacterial VGSC, NaChBac in a closed pore conformation. This computation allowed us to identify binding sites and access pathways for the commonly used volatile general anesthetic, isoflurane. Three sites have been characterized with binding affinities in a physiologically relevant range. Interestingly, one of the most favorable sites is in the pore of the channel, suggesting that the binding sites of local and general anesthetics may overlap. Surprisingly, even though the activation gate of the channel is closed, and therefore the pore and the aqueous compartment at the intracellular side are disconnected, we observe binding of isoflurane in the central cavity. Several sampled association and dissociation events in the central cavity provide consistent support to the hypothesis that the "fenestrations" present in the membrane-embedded region of the channel act as the long-hypothesized hydrophobic drug access pathway.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Simulation setup and isoflurane binding sites.
(A) Structural domains of NaChBac showing the VSD (purple), the S4–S5 linkers (red) and the pore domain (blue/green) with the S6 helices highlighted in green. (B) Isoflurane flooding simulation system initial setup showing the NaChBac protein (orange) in the POPC bilayer (white) with isoflurane molecules in the aqueous phase. (C) The three binding sites identified by clustering analysis: extracellular site (red), linker site (yellow) and cavity site (purple/green).
Figure 2
Figure 2. Isoflurane binding sites.
Extracellular (A and B) and linker site (C and D): residues interacting with isoflurane are highlighted in the insets B and D. For clarity, alternating subunits are shown in cyan/pink and labeled a through d. (E and F) Side and top views of isoflurane molecules occupying the cavity site and fenestrations.
Figure 3
Figure 3. Isoflurane displacement of cavity water molecules.
(A) Absolute number of water molecules (red) and isoflurane molecules (blue) within the cavity as a function of time. (B) Number of cavity waters as a function of the number of bound isoflurane molecules. Note that each isoflurane molecule displaces approximately 6 waters.
Figure 4
Figure 4. Fenestrations as the hydrophobic access pathway.
A and B show two views of an isoflurane molecule diffusing in (A) and out (B) of the central cavity through two adjacent fenestrations. Cavity and fenestrations are shown as grey surfaces.

Similar articles

Cited by

References

    1. Hille B (2001) Ion channels of excitable membranes. Sunderland, Mass.: Sinauer.
    1. Ratnakumari L, Hemmings HC (1998) Inhibition of presynaptic sodium channels by halothane. Anesthesiology 88: 1043–1054. - PubMed
    1. Ouyang W, Wang G, Hemmings HC (2003) Isoflurane and propofol inhibit voltage-gated sodium channels in isolated rat neurohypophysial nerve terminals. Mol Pharmacol 64: 373–381. - PubMed
    1. Ouyang W, Jih T-Y, Zhang T-T, Correa AM, Hemmings HC (2007) Isoflurane inhibits NaChBac, a prokaryotic voltage-gated sodium channel. J Pharmacol Exp Ther 322: 1076–1083. - PubMed
    1. Ouyang W, Herold KF, Hemmings HC (2009) Comparative effects of halogenated inhaled anesthetics on voltage-gated Na+ channel function. Anesthesiology 110: 582–590. - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources