SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
- PMID: 23806337
- PMCID: PMC3769971
- DOI: 10.1016/j.molcel.2013.06.001
SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
Abstract
Protein function is regulated by diverse posttranslational modifications. The mitochondrial sirtuin SIRT5 removes malonyl and succinyl moieties from target lysines. The spectrum of protein substrates subject to these modifications is unknown. We report systematic profiling of the mammalian succinylome, identifying 2,565 succinylation sites on 779 proteins. Most of these do not overlap with acetylation sites, suggesting differential regulation of succinylation and acetylation. Our analysis reveals potential impacts of lysine succinylation on enzymes involved in mitochondrial metabolism; e.g., amino acid degradation, the tricarboxylic acid cycle (TCA) cycle, and fatty acid metabolism. Lysine succinylation is also present on cytosolic and nuclear proteins; indeed, we show that a substantial fraction of SIRT5 is extramitochondrial. SIRT5 represses biochemical activity of, and cellular respiration through, two protein complexes identified in our analysis, pyruvate dehydrogenase complex and succinate dehydrogenase. Our data reveal widespread roles for lysine succinylation in regulating metabolism and potentially other cellular functions.
Copyright © 2013 Elsevier Inc. All rights reserved.
Figures
Similar articles
-
Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury.J Mol Cell Cardiol. 2015 Nov;88:73-81. doi: 10.1016/j.yjmcc.2015.09.005. Epub 2015 Sep 24. J Mol Cell Cardiol. 2015. PMID: 26388266 Free PMC article.
-
Quantitative Analysis of the Sirt5-Regulated Lysine Succinylation Proteome in Mammalian Cells.Methods Mol Biol. 2016;1410:23-37. doi: 10.1007/978-1-4939-3524-6_2. Methods Mol Biol. 2016. PMID: 26867736
-
SIRT5-mediated SDHA desuccinylation promotes clear cell renal cell carcinoma tumorigenesis.Free Radic Biol Med. 2019 Apr;134:458-467. doi: 10.1016/j.freeradbiomed.2019.01.030. Epub 2019 Jan 29. Free Radic Biol Med. 2019. PMID: 30703481
-
The Mystery of Extramitochondrial Proteins Lysine Succinylation.Int J Mol Sci. 2021 Jun 4;22(11):6085. doi: 10.3390/ijms22116085. Int J Mol Sci. 2021. PMID: 34199982 Free PMC article. Review.
-
Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology.Crit Rev Biochem Mol Biol. 2018 Jun;53(3):311-334. doi: 10.1080/10409238.2018.1458071. Epub 2018 Apr 11. Crit Rev Biochem Mol Biol. 2018. PMID: 29637793 Free PMC article. Review.
Cited by
-
Evidence for a Negative Correlation between Human Reactive Enamine-Imine Intermediate Deaminase A (RIDA) Activity and Cell Proliferation Rate: Role of Lysine Succinylation of RIDA.Int J Mol Sci. 2021 Apr 7;22(8):3804. doi: 10.3390/ijms22083804. Int J Mol Sci. 2021. PMID: 33916919 Free PMC article.
-
Mitochondrial sirtuins: Energy dynamics and cancer metabolism.Mol Cells. 2024 Feb;47(2):100029. doi: 10.1016/j.mocell.2024.100029. Epub 2024 Feb 6. Mol Cells. 2024. PMID: 38331199 Free PMC article. Review.
-
The Role of Sirtuins in Kidney Diseases.Int J Mol Sci. 2020 Sep 12;21(18):6686. doi: 10.3390/ijms21186686. Int J Mol Sci. 2020. PMID: 32932720 Free PMC article. Review.
-
Research advances on epigenetics and cancer metabolism.Zhejiang Da Xue Xue Bao Yi Xue Ban. 2021 Feb 25;50(1):1-16. doi: 10.3724/zdxbyxb-2021-0053. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2021. PMID: 34117859 Free PMC article. Review. English.
-
The Role of Posttranslational Modification and Mitochondrial Quality Control in Cardiovascular Diseases.Oxid Med Cell Longev. 2021 Feb 18;2021:6635836. doi: 10.1155/2021/6635836. eCollection 2021. Oxid Med Cell Longev. 2021. Retraction in: Oxid Med Cell Longev. 2023 Oct 11;2023:9821720. doi: 10.1155/2023/9821720 PMID: 33680284 Free PMC article. Retracted. Review.
References
-
- Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007;447:407–412. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- T32 AG000114/AG/NIA NIH HHS/United States
- T32AG000114/AG/NIA NIH HHS/United States
- R21 CA177925/CA/NCI NIH HHS/United States
- U54 GM103520/GM/NIGMS NIH HHS/United States
- P30 AG024824/AG/NIA NIH HHS/United States
- P30 DK089503/DK/NIDDK NIH HHS/United States
- P60 DK020572/DK/NIDDK NIH HHS/United States
- R01 GM101171/GM/NIGMS NIH HHS/United States
- DP3DK094292/DK/NIDDK NIH HHS/United States
- P30 AG013283/AG/NIA NIH HHS/United States
- P30AG024824/AG/NIA NIH HHS/United States
- U54GM103520/GM/NIGMS NIH HHS/United States
- DP3 DK094292/DK/NIDDK NIH HHS/United States
- P30AG013283/AG/NIA NIH HHS/United States
- P30DK089503/DK/NIDDK NIH HHS/United States
- R01GM101171/GM/NIGMS NIH HHS/United States
- P30 DK020572/DK/NIDDK NIH HHS/United States
- P60DK020572/DK/NIDDK NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
