Wavelet Analysis of Circadian and Ultradian Behavioral Rhythms

J Circadian Rhythms. 2013 Jul 1;11(1):5. doi: 10.1186/1740-3391-11-5.


: We review time-frequency methods that can be useful in quantifying circadian and ultradian patterns in behavioral records. These records typically exhibit details that may not be captured through commonly used measures such as activity onset and so may require alternative approaches. For instance, activity may involve multiple bouts that vary in duration and magnitude within a day, or may exhibit day-to-day changes in period and in ultradian activity patterns. The discrete Fourier transform and other types of periodograms can estimate the period of a circadian rhythm, but we show that they can fail to correctly assess ultradian periods. In addition, such methods cannot detect changes in the period over time. Time-frequency methods that can localize frequency estimates in time are more appropriate for analysis of ultradian periods and of fluctuations in the period. The continuous wavelet transform offers a method for determining instantaneous frequency with good resolution in both time and frequency, capable of detecting changes in circadian period over the course of several days and in ultradian period within a given day. The discrete wavelet transform decomposes a time series into components associated with distinct frequency bands, thereby facilitating the removal of noise and trend or the isolation of a particular frequency band of interest. To demonstrate the wavelet-based analysis, we apply the transforms to a numerically-generated example and also to a variety of hamster behavioral records. When used appropriately, wavelet transforms can reveal patterns that are not easily extracted using other methods of analysis in common use, but they must be applied and interpreted with care.