Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2013 Sep;62(9):1499-509.
doi: 10.1007/s00262-013-1453-3. Epub 2013 Jul 2.

Therapeutic Vaccination Against Autologous Cancer Stem Cells With mRNA-transfected Dendritic Cells in Patients With Glioblastoma

Free PMC article
Clinical Trial

Therapeutic Vaccination Against Autologous Cancer Stem Cells With mRNA-transfected Dendritic Cells in Patients With Glioblastoma

Einar Osland Vik-Mo et al. Cancer Immunol Immunother. .
Free PMC article


Background: The growth and recurrence of several cancers appear to be driven by a population of cancer stem cells (CSCs). Glioblastoma, the most common primary brain tumor, is invariably fatal, with a median survival of approximately 1 year. Although experimental data have suggested the importance of CSCs, few data exist regarding the potential relevance and importance of these cells in a clinical setting.

Methods: We here present the first seven patients treated with a dendritic cell (DC)-based vaccine targeting CSCs in a solid tumor. Brain tumor biopsies were dissociated into single-cell suspensions, and autologous CSCs were expanded in vitro as tumorspheres. From these, CSC-mRNA was amplified and transfected into monocyte-derived autologous DCs. The DCs were aliquoted to 9-18 vaccines containing 10(7) cells each. These vaccines were injected intradermally at specified intervals after the patients had received a standard 6-week course of post-operative radio-chemotherapy. The study was registered with the identifier NCT00846456.

Results: Autologous CSC cultures were established from ten out of eleven tumors. High-quality RNA was isolated, and mRNA was amplified in all cases. Seven patients were able to be weaned from corticosteroids to receive DC immunotherapy. An immune response induced by vaccination was identified in all seven patients. No patients developed adverse autoimmune events or other side effects. Compared to matched controls, progression-free survival was 2.9 times longer in vaccinated patients (median 694 vs. 236 days, p = 0.0018, log-rank test).

Conclusion: These findings suggest that vaccination against glioblastoma stem cells is safe, well-tolerated, and may prolong progression-free survival.


Fig. 1
Fig. 1
Schematic overview of the production of DCs targeting glioblastoma stem cells. Left circle: Tumor biopsies were collected during standard surgery. Autologous tumorsphere cultures containing brain cancer stem cells were established under GMP conditions. Upon tertiary sphere formation, RNA was purified from the cancer stem cell cultures, and mRNA was amplified using the strand switch method. Right circle: before the initiation of radio-chemotherapy, the patient underwent leukapheresis for harvesting of monocytes. Ex vivo-cultured autologous monocytes were then differentiated into immature dendritic cells. Center: The dendritic cells were transfected with autologous glioblastoma stem cell mRNA by electroporation. Below: Following termination of chemo-radiotherapy according to the EORTC regimen, matured dendritic cells expressing glioblastoma stem cell antigens were administered to the patient by intra-dermal injections five times for induction over the first 3 weeks and thereafter monthly for up to 18 vaccinations
Fig. 2
Fig. 2
Changes in size of contrast-enhancing tumor over time. a Brain MRI axial T1 images after intravenous gadolinium contrast in patient #5. Days before (negative) and after surgery are noted on the MRI scans. No residual tumor was observed post-operatively (day 2), but at the end of the 6 weeks course of combined chemo/radiotherapy, a small contrast-enhancing lesion could be detected at the anterior margin of the resection cavity, as indicated with the white arrow (day 64). b Maximal area of contrast enhancement plotted against days since surgery (abscissa). Lower part of the figure indicates the timing of concomitant chemo-radiotherapy (blue box), DC vaccinations (blue arrows), and immune response (red arrow)
Fig. 3
Fig. 3
Survival of patient treated with DCs targeting GSCs compared to matched control patients treated with standard therapy. Comparison of the seven patients treated with DCs targeting GSCs compared to the ten controls matched by age, performance status, tumor volume, treatment modalities, and lack of corticosteroid treatment. a The vaccinated patients had a significantly longer progression-free survival (median of 694 days) compared to the matched controls (median 236 days; p = 0.0018, log-rank test). Two DC-treated patients had not developed recurrence (short straight bars). b The median overall survival was 759 days in the treated group compared to 585 days in the control group (p = 0.11, log-rank test). Three patients were still alive >1,000 days after surgery. c Descriptive data of the treated and control groups. Only PFS was significantly different between the two groups

Similar articles

See all similar articles

Cited by 67 articles

See all "Cited by" articles


    1. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC–NCIC trial. Lancet Oncol. 2009;10:459–466. doi: 10.1016/S1470-2045(09)70025-7. - DOI - PubMed
    1. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–111. doi: 10.1038/35102167. - DOI - PubMed
    1. Vermeulen L, de Sousa e Melo F, Richel DJ, Medema JP. The developing cancer stem-cell model: clinical challenges and opportunities. Lancet Oncol. 2012;13:e83–e89. doi: 10.1016/S1470-2045(11)70257-1. - DOI - PubMed
    1. Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002;39:193–206. doi: 10.1002/glia.10094. - DOI - PubMed
    1. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255:1707–1710. doi: 10.1126/science.1553558. - DOI - PubMed

Publication types

MeSH terms

Associated data