Sensory maintenance in top-down selective attention to audiovisual inputs involves distributed cortical activations, while the connectivity between the widespread cortical regions has not been well understood. Graph theory has been demonstrated to be a useful tool in the analysis of brain networks. In this study, we used graph theoretical analysis to investigate the functional brain networks for sensory maintenance in top-down selective attention to audiovisual inputs. Electroencephalograms (EEGs) of 30 channels were recorded from 13 young healthy subjects during a passive view task and a top-down intersensory selective attention task. Phase synchronization indices of EEG signals in pair were computed to construct weighted brain networks. We found small-world properties of the brain networks during both passive view state and top-down selective attentional state in α, β, and γ bands. In addition, the significantly increased clustering coefficient and decreased characteristic path length were observed for brain networks during attentional state compared with passive view state in both β band and γ band. Our results suggest that functional brain networks in higher frequency bands, i.e., β band and γ band, are integrated in different ways during attentional state compared with passive view state.