Retinal layer segmentation of macular OCT images using boundary classification
- PMID: 23847738
- PMCID: PMC3704094
- DOI: 10.1364/BOE.4.001133
Retinal layer segmentation of macular OCT images using boundary classification
Abstract
Optical coherence tomography (OCT) has proven to be an essential imaging modality for ophthalmology and is proving to be very important in neurology. OCT enables high resolution imaging of the retina, both at the optic nerve head and the macula. Macular retinal layer thicknesses provide useful diagnostic information and have been shown to correlate well with measures of disease severity in several diseases. Since manual segmentation of these layers is time consuming and prone to bias, automatic segmentation methods are critical for full utilization of this technology. In this work, we build a random forest classifier to segment eight retinal layers in macular cube images acquired by OCT. The random forest classifier learns the boundary pixels between layers, producing an accurate probability map for each boundary, which is then processed to finalize the boundaries. Using this algorithm, we can accurately segment the entire retina contained in the macular cube to an accuracy of at least 4.3 microns for any of the nine boundaries. Experiments were carried out on both healthy and multiple sclerosis subjects, with no difference in the accuracy of our algorithm found between the groups.
Keywords: (100.0100) Image processing; (170.4470) Ophthalmology; (170.4500) Optical coherence tomography.
Figures
Similar articles
-
Segmentation of retinal OCT images using a random forest classifier.Proc SPIE Int Soc Opt Eng. 2013 Mar 13;8669:1667494. doi: 10.1117/12.2006649. Proc SPIE Int Soc Opt Eng. 2013. PMID: 23710325 Free PMC article.
-
Comparison of point estimates and average thicknesses of retinal layers measured using manual optical coherence tomography segmentation for quantification of retinal neurodegeneration in multiple sclerosis.Curr Eye Res. 2013 Jan;38(1):224-8. doi: 10.3109/02713683.2012.722243. Epub 2012 Sep 6. Curr Eye Res. 2013. PMID: 22954302 Free PMC article.
-
Layer boundary evolution method for macular OCT layer segmentation.Biomed Opt Express. 2019 Feb 4;10(3):1064-1080. doi: 10.1364/BOE.10.001064. eCollection 2019 Mar 1. Biomed Opt Express. 2019. PMID: 30891330 Free PMC article.
-
Automatic Anisotropic Diffusion Filtering and Graph-search Segmentation of Macular Spectral-domain Optical Coherence Tomographic (SD-OCT) Images.Curr Med Imaging Rev. 2019;15(3):308-318. doi: 10.2174/1573405613666171201155119. Curr Med Imaging Rev. 2019. PMID: 31989882 Review.
-
Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis.Lancet Neurol. 2017 Oct;16(10):797-812. doi: 10.1016/S1474-4422(17)30278-8. Epub 2017 Sep 12. Lancet Neurol. 2017. PMID: 28920886 Review.
Cited by
-
Recurrent Self Fusion: Iterative Denoising for Consistent Retinal OCT Segmentation.Ophthalmic Med Image Anal (2023). 2023 Oct;14096:42-51. doi: 10.1007/978-3-031-44013-7_5. Epub 2023 Sep 16. Ophthalmic Med Image Anal (2023). 2023. PMID: 38318463 Free PMC article.
-
Rapid measurement of epidermal thickness in OCT images of skin.Sci Rep. 2024 Jan 26;14(1):2230. doi: 10.1038/s41598-023-47051-6. Sci Rep. 2024. PMID: 38278852 Free PMC article.
-
Automatic segmentation of layers in chorio-retinal complex using Graph-based method for ultra-speed 1.7 MHz wide field swept source FDML optical coherence tomography.Med Biol Eng Comput. 2024 Jan 9. doi: 10.1007/s11517-023-03007-6. Online ahead of print. Med Biol Eng Comput. 2024. PMID: 38191981
-
Deep learning network with differentiable dynamic programming for retina OCT surface segmentation.Biomed Opt Express. 2023 Jun 8;14(7):3190-3202. doi: 10.1364/BOE.492670. eCollection 2023 Jul 1. Biomed Opt Express. 2023. PMID: 37497505 Free PMC article.
-
Effects of Ibudilast on Retinal Atrophy in Progressive Multiple Sclerosis Subtypes: Post Hoc Analyses of the SPRINT-MS Trial.Neurology. 2023 Sep 5;101(10):e1014-e1024. doi: 10.1212/WNL.0000000000207551. Epub 2023 Jul 17. Neurology. 2023. PMID: 37460235 Clinical Trial.
References
-
- Saidha S., Syc S. B., Ibrahim M. A., Eckstein C., Warner C. V., Farrell S. K., Oakley J. D., Durbin M. K., Meyer S. A., Balcer L. J., Frohman E. M., Rosenzweig J. M., Newsome S. D., Ratchford J. N., Nguyen Q. D., Calabresi P. A., “Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography,” Brain 134, 518–533 (2011)10.1093/brain/awq346 - DOI - PubMed
-
- Saidha S., Sotirchos E. S., Ibrahim M. A., Crainiceanu C. M., Gelfand J. M., Sepah Y. J., Ratchford J. N., Oh J., Seigo M. A., Newsome S. D., Balcer L. J., Frohman E. M., Green A. J., Nguyen Q. D., Calabresi P. A., “Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study,” Lancet Neurol. 11, 963–972 (2012)10.1016/S1474-4422(12)70213-2 - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources