This study examines the role of the cannabinoid CB2 receptor (CB2 r) on the vulnerability to ethanol consumption. The time-related and dose-response effects of ethanol on rectal temperature, handling-induced convulsions (HIC) and blood ethanol concentrations were evaluated in CB2 KO and wild-type (WT) mice. The reinforcing properties of ethanol were evaluated in conditioned place preference (CPP), preference and voluntary ethanol consumption and oral ethanol self-administration. Water-maintained behavior schedule was performed to evaluate the degree of motivation induced by a natural stimulus. Preference for non-alcohol tastants assay was performed to evaluate the differences in taste sensitivity. Tyrosine hydroxylase (TH) and μ-opioid receptor gene expressions were also measured in the ventral tegmental area and nucleus accumbens (NAcc), respectively. CB2 KO mice presented increased HIC score, ethanol-CPP, voluntary ethanol consumption and preference, acquisition of ethanol self-administration, and increased motivation to drink ethanol compared with WT mice. No differences were found between genotypes in the water-maintained behavior schedule or preference for non-alcohol tastants. Naïve CB2 KO mice presented increased μ-opioid receptor gene expression in NAcc. Acute ethanol administration (1-2 g/kg) increased TH and μ-opioid receptor gene expressions in CB2 KO mice, whereas the lower dose of ethanol decreased TH gene expression in WT mice. These results suggest that deletion of the CB2 r gene increased preference for and vulnerability to ethanol consumption, at least in part, by increased ethanol-induced sensitivity of the TH and μ-opioid receptor gene expressions in mesolimbic neurons. Future studies will determine the role of CB2 r as a target for the treatment of problems related with alcohol consumption.
Keywords: cannabinoid CB2 receptor; ethanol consumption; ethanol self-administration; knockout mice; tyrosine hydroxylase; μ-opioid receptor.
© 2013 Society for the Study of Addiction.