Electrospun collagen/poly(L-lactic acid-co-epsilon-caprolactone) hybrid nanofibrous membranes combining with sandwich construction model for cartilage tissue engineering

J Nanosci Nanotechnol. 2013 Jun;13(6):3818-25. doi: 10.1166/jnn.2013.7436.

Abstract

Electrospinning has recently received much attention, showing great potential as a novel scaffold fabrication method for cartilage tissue engineering. In this study, we developed a biodegradable hybrid nanofibrous membrane of collagen and poly(L-lactic acid-co-epsilon-caprolactone) (PLCL, 75:25) by electrospinning for cartilage tissue engineering. The structure and cell affinity of collagen/PLCL membranes were analyzed by scanning electron microscopy (SEM) and microscopy. The sandwiched cell-scaffold constructs were kept in culture for 1 week in vitro and then implanted subcutaneously into nude mice for 4, 8 and 12 weeks. Gross observation, histological and immunohistological evaluation, glycosaminoglycan (GAG) analysis and Young's modulus measurements were performed at each post-implantation time-point. Electrospun collagen/PLCL nanofibrous membranes could mimic the natural ECM and have good cell affinity. All the cell-scaffold constructs showed cartilage-like morphology with a white, smooth and glistening appearance after 4, 8 and 12 weeks of implantation. The abundance of GAG containing cartilaginous matrix appeared to increase greatly with implantation time. Furthermore, well-distributed cartilage and nearly no empty areas were observed in constructs even at 12 weeks post-implantation. In addition, the mechanical properties of the engineered cartilage after 12 weeks of implantation could reach 83% of that of native rabbit auricular cartilage. These results indicate that collagen/PLCL nanofibrous membranes with the sandwich construction model may serve as a new approach for cartilage tissue engineering.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cartilage*
  • Collagen / chemistry*
  • Lactic Acid / chemistry*
  • Membranes, Artificial*
  • Microscopy, Electron, Scanning
  • Nanofibers*
  • Polyesters / chemistry*
  • Polymers / chemistry*
  • Rabbits
  • Tissue Engineering*

Substances

  • Membranes, Artificial
  • Polyesters
  • Polymers
  • poly(lactic acid-co-epsilon-caprolactone)
  • Lactic Acid
  • poly(lactide)
  • Collagen