In vivo proton range verification: a review

Phys Med Biol. 2013 Aug 7;58(15):R131-60. doi: 10.1088/0031-9155/58/15/R131. Epub 2013 Jul 17.


Protons are an interesting modality for radiotherapy because of their well defined range and favourable depth dose characteristics. On the other hand, these same characteristics lead to added uncertainties in their delivery. This is particularly the case at the distal end of proton dose distributions, where the dose gradient can be extremely steep. In practice however, this gradient is rarely used to spare critical normal tissues due to such worries about its exact position in the patient. Reasons for this uncertainty are inaccuracies and non-uniqueness of the calibration from CT Hounsfield units to proton stopping powers, imaging artefacts (e.g. due to metal implants) and anatomical changes of the patient during treatment. In order to improve the precision of proton therapy therefore, it would be extremely desirable to verify proton range in vivo, either prior to, during, or after therapy. In this review, we describe and compare state-of-the art in vivo proton range verification methods currently being proposed, developed or clinically implemented.

Publication types

  • Review

MeSH terms

  • Diagnostic Imaging
  • Humans
  • Physical Phenomena*
  • Proton Therapy / methods*
  • Protons*
  • Radiotherapy Planning, Computer-Assisted
  • Uncertainty


  • Protons