Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Sep 1;537(1):125-32.
doi: 10.1016/j.abb.2013.07.005. Epub 2013 Jul 19.

Characterization of Ca(2+)/H(+) exchange in the plasma membrane of Saccharomyces cerevisiae

Affiliations

Characterization of Ca(2+)/H(+) exchange in the plasma membrane of Saccharomyces cerevisiae

Sha Hong et al. Arch Biochem Biophys. .

Abstract

The characteristics of the Ca(2+)/H(+) exchange were directly investigated in functionally inverted (inside-out) plasma membrane vesicles isolated from yeast using an aqueous two-phase partitioning method. Results showed that following the generation of an inside-acid pH gradient (fluorescence quenching), addition of Ca(2+) caused movement of H(+) out of the vesicles (fluorescence recovery). The Ca(2+)/H(+) exchange displayed saturation kinetics with respect to extravesicular Ca(2+) and ATP concentrations in the plasma membrane, and showed specificity for Ca(2+). The protonophore FCCP (carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone), abolished the fluorescence quenching and consequently inhibited Ca(2+)/H(+) exchange in plasma membrane vesicles. Vanadate, which is known to inhibit the plasma membrane H(+)-ATPase, significantly decreased the Ca(2+)-dependent transport of H(+) out of vesicles. When the electrical potential across the plasma membrane was dissipated with valinomycin and potassium, the rate of Ca(2+)/H(+) exchange increased compared to that of the control without valinomycin, indicating that the stoichiometric ratio for this exchange is greater than 2H(+):Ca(2+). These data suggest that Ca(2+) is transported out of yeast cells through a Ca(2+)/H(+) exchange system that is driven by the proton-motive force generated by the plasma membrane H(+)-ATPase.

Keywords: Ca(2+)/H(+) exchange; H(+)-ATPase; Plasma membrane; Saccharomyces cerevisiae.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources