Rapid, parallel path planning by propagating wavefronts of spiking neural activity
- PMID: 23882213
- PMCID: PMC3714542
- DOI: 10.3389/fncom.2013.00098
Rapid, parallel path planning by propagating wavefronts of spiking neural activity
Abstract
Efficient path planning and navigation is critical for animals, robotics, logistics and transportation. We study a model in which spatial navigation problems can rapidly be solved in the brain by parallel mental exploration of alternative routes using propagating waves of neural activity. A wave of spiking activity propagates through a hippocampus-like network, altering the synaptic connectivity. The resulting vector field of synaptic change then guides a simulated animal to the appropriate selected target locations. We demonstrate that the navigation problem can be solved using realistic, local synaptic plasticity rules during a single passage of a wavefront. Our model can find optimal solutions for competing possible targets or learn and navigate in multiple environments. The model provides a hypothesis on the possible computational mechanisms for optimal path planning in the brain, at the same time it is useful for neuromorphic implementations, where the parallelism of information processing proposed here can fully be harnessed in hardware.
Keywords: hippocampus; mental exploration; navigation; neuromorphic systems; parallel processing; path planning; spike timing dependent plasticity; wave propagation.
Figures
Similar articles
-
Benchmarking Highly Parallel Hardware for Spiking Neural Networks in Robotics.Front Neurosci. 2021 Jun 29;15:667011. doi: 10.3389/fnins.2021.667011. eCollection 2021. Front Neurosci. 2021. PMID: 34267622 Free PMC article.
-
Brain inspired path planning algorithms for drones.Front Neurorobot. 2023 Mar 3;17:1111861. doi: 10.3389/fnbot.2023.1111861. eCollection 2023. Front Neurorobot. 2023. PMID: 36937552 Free PMC article.
-
Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.Neural Netw. 2015 Dec;72:152-67. doi: 10.1016/j.neunet.2015.07.004. Epub 2015 Aug 18. Neural Netw. 2015. PMID: 26422422
-
The hippocampus as a cognitive graph.J Gen Physiol. 1996 Jun;107(6):663-94. doi: 10.1085/jgp.107.6.663. J Gen Physiol. 1996. PMID: 8783070 Free PMC article. Review.
-
Spatial Navigation.Adv Exp Med Biol. 2020;1284:63-90. doi: 10.1007/978-981-15-7086-5_7. Adv Exp Med Biol. 2020. PMID: 32852741 Review.
Cited by
-
Benchmarking Highly Parallel Hardware for Spiking Neural Networks in Robotics.Front Neurosci. 2021 Jun 29;15:667011. doi: 10.3389/fnins.2021.667011. eCollection 2021. Front Neurosci. 2021. PMID: 34267622 Free PMC article.
-
Toward an Integration of Deep Learning and Neuroscience.Front Comput Neurosci. 2016 Sep 14;10:94. doi: 10.3389/fncom.2016.00094. eCollection 2016. Front Comput Neurosci. 2016. PMID: 27683554 Free PMC article.
-
Spiking neural network connectivity and its potential for temporal sensory processing and variable binding.Front Comput Neurosci. 2013 Dec 19;7:182. doi: 10.3389/fncom.2013.00182. eCollection 2013. Front Comput Neurosci. 2013. PMID: 24391578 Free PMC article. No abstract available.
-
Re-encoding of associations by recurrent plasticity increases memory capacity.Front Synaptic Neurosci. 2014 Jun 10;6:13. doi: 10.3389/fnsyn.2014.00013. eCollection 2014. Front Synaptic Neurosci. 2014. PMID: 24959137 Free PMC article.
-
Toward Reflective Spiking Neural Networks Exploiting Memristive Devices.Front Comput Neurosci. 2022 Jun 16;16:859874. doi: 10.3389/fncom.2022.859874. eCollection 2022. Front Comput Neurosci. 2022. PMID: 35782090 Free PMC article. Review.
References
-
- Amaral D., Lavenex P. (2006). Hippocampal neuroanatomy, in The Hippocampus Book, eds Andersen P., Morris R., Amaral D., Bliss T., O'Keefe T. J. (New York, NY: Oxford University Press; ), 37–114 ISBN 978-0-19-510027-3
LinkOut - more resources
Full Text Sources
Other Literature Sources
