Effect of dietary putrescine on whole body growth and polyamine metabolism

Proc Soc Exp Biol Med. 1990 Sep;194(4):332-6. doi: 10.3181/00379727-194-43100.

Abstract

Putrescine (1,4-diaminobutane) is the simplest of the mammalian polyamines. These are small, positively charged molecules which are essential for cell growth and are thought to play a role in regulation of anabolic events such as synthesis of DNA, RNA, and protein. Recent reports have indicated the potential for dietary precursor amino acids of putrescine to alter tissue putrescine concentrations. The current study was conducted to determine the physiologic significance of these effects by feeding up to flooding doses of putrescine to determine any influence on whole body growth and polyamine metabolism. A total of 96 chicks were fed purified crystalline amino acid diets containing 0.0, 0.2, 0.4, 0.6, 0.8, or 1.0% purified putrescine (four birds per pen, four pens per diet) for 14 days. The feeding of 0.2% putrescine increased growth rate beyond that of controls while further supplements reduced growth and were toxic when 0.8 and 1.0% putrescine were fed. Hepatic and muscle concentrations of ornithine increased with dietary putrescine while the effect in kidney was much less. Putrescine concentrations in liver, kidney, and muscle rose when 0.4% putrescine or more was fed. This effect was particularly obvious in muscle in which there were also increases in the concentrations of spermidine and spermine. In a subsequent similar experiment, putrescine was fed at 0.0, 0.1, 0.2, 0.3, 0.4, or 0.5% to determine the effect on the activities of the key enzymes regulating polyamine synthesis. The feeding of putrescine at even 0.1% caused a rapid reduction in hepatic ornithine decarboxylase activity while S-adenosylmethionine decarboxylase and arginase activities were not influenced by diet. It was concluded that excess tissue putrescine can be toxic to whole organisms but small, orally administered doses of this metabolite can promote growth.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acids / analysis
  • Animals
  • Biogenic Polyamines / metabolism*
  • Chickens
  • Diet
  • Growth / drug effects*
  • Ornithine Decarboxylase / analysis
  • Putrescine / pharmacology*

Substances

  • Amino Acids
  • Biogenic Polyamines
  • Ornithine Decarboxylase
  • Putrescine