Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina

Vis Neurosci. 2014 Mar;31(2):139-51. doi: 10.1017/S0952523813000230. Epub 2013 Jul 29.

Abstract

Anatomical and physiological approaches are beginning to reveal the synaptic origins of parallel ON- and OFF-pathway retinal circuits for the transmission of short (S-) wavelength sensitive cone signals in the primate retina. Anatomical data suggest that synaptic output from S-cones is largely segregated; central elements of synaptic triads arise almost exclusively from the "blue-cone" bipolar cell, a presumed ON bipolar, whereas triad-associated contacts derive primarily from the "flat" midget bipolar cell, a hyperpolarizing, OFF bipolar. Similarly, horizontal cell connectivity is also segregated, with only the H2 cell-type receiving numerous contacts from S-cones. Negative feedback from long (L-) and middle (M-) wavelength sensitive cones via the H2 horizontal cells elicits an antagonistic surround in S-cones demonstrating that S versus L + M or "blue-yellow" opponency is first established in the S-cone. However, the S-cone output utilizes distinct synaptic mechanisms to create color opponency at the ganglion cell level. The blue-cone bipolar cell is presynaptic to the small bistratified, "blue-ON" ganglion cell. S versus L + M cone opponency arises postsynaptically by converging S-ON and LM-OFF excitatory bipolar inputs to the ganglion cell's bistratified dendritic tree. The common L + M cone surrounds of the parallel S-ON and LM-OFF cone bipolar inputs appear to cancel resulting in "blue-yellow" antagonism without center-surround spatial opponency. By contrast, in midget ganglion cells, opponency arises by the differential weighting of cone inputs to the receptive field center versus surround. In the macula, the "private-line" connection from a midget ganglion cell to a single cone predicts that S versus L + M opponency is transmitted from the S-cone to the S-OFF midget bipolar and ganglion cell. Beyond the macula, OFF-midget ganglion cell dendritic trees enlarge and collect additional input from multiple L and M cones. Thus S-OFF opponency via the midget pathway would be expected to become more complex in the near retinal periphery as L and/or M and S cone inputs sum to the receptive field center. An important goal for further investigation will be to explore the hypothesis that distinct bistratified S-ON versus midget S-OFF retinal circuits are the substrates for human psychophysical detection mechanisms attributed to S-ON versus S-OFF perceptual channels.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Color Perception / physiology
  • Color Vision / physiology*
  • Patch-Clamp Techniques
  • Primates / physiology*
  • Retinal Bipolar Cells / cytology
  • Retinal Cone Photoreceptor Cells / cytology
  • Retinal Cone Photoreceptor Cells / physiology*
  • Retinal Ganglion Cells / cytology
  • Retinal Ganglion Cells / physiology
  • Retinal Neurons / cytology
  • Retinal Neurons / physiology*
  • Synapses / physiology*