S cones: Evolution, retinal distribution, development, and spectral sensitivity

Vis Neurosci. 2014 Mar;31(2):115-38. doi: 10.1017/S0952523813000242. Epub 2013 Jul 29.

Abstract

S cones expressing the short wavelength-sensitive type 1 (SWS1) class of visual pigment generally form only a minority type of cone photoreceptor within the vertebrate duplex retina. Hence, their primary role is in color vision, not in high acuity vision. In mammals, S cones may be present as a constant fraction of the cones across the retina, may be restricted to certain regions of the retina or may form a gradient across the retina, and in some species, there is coexpression of SWS1 and the long wavelength-sensitive (LWS) class of pigment in many cones. During retinal development, SWS1 opsin expression generally precedes that of LWS opsin, and evidence from genetic studies indicates that the S cone pathway may be the default pathway for cone development. With the notable exception of the cartilaginous fishes, where S cones appear to be absent, they are present in representative species from all other vertebrate classes. S cone loss is not, however, uncommon; they are absent from most aquatic mammals and from some but not all nocturnal terrestrial species. The peak spectral sensitivity of S cones depends on the spectral characteristics of the pigment present. Evidence from the study of agnathans and teleost fishes indicates that the ancestral vertebrate SWS1 pigment was ultraviolet (UV) sensitive with a peak around 360 nm, but this has shifted into the violet region of the spectrum (>380 nm) on many separate occasions during vertebrate evolution. In all cases, the shift was generated by just one or a few replacements in tuning-relevant residues. Only in the avian lineage has tuning moved in the opposite direction, with the reinvention of UV-sensitive pigments.

Publication types

  • Review

MeSH terms

  • Albinism / physiopathology
  • Amphibians
  • Animals
  • Biological Evolution*
  • Birds
  • Cetacea
  • Color Vision / physiology*
  • Fishes
  • Humans
  • Mammals
  • Opsins / genetics
  • Opsins / metabolism
  • Phylogeny
  • Reptiles
  • Retina / cytology*
  • Retina / growth & development
  • Retina / physiology*
  • Retinal Cone Photoreceptor Cells / cytology*
  • Retinal Cone Photoreceptor Cells / physiology*
  • Retinal Diseases / physiopathology
  • Retinal Pigments / metabolism
  • Species Specificity
  • Sulfonamides
  • Urea / analogs & derivatives

Substances

  • Opsins
  • Retinal Pigments
  • Sulfonamides
  • primisulfuron
  • Urea