The discovery of the carcinoembryonic antigen (CEA) as a tumor marker for colorectal cancer some 50 years ago became the first step in the identification of a much larger family of 12 carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) with surprisingly diverse functions in cell adhesion, in intracellular and intercellular signaling, and during complex biological processes such as cancer progression, inflammation, angiogenesis, and metastasis. The development of proper molecular and biochemical tools and mouse models has enabled bidirectional translation of the CEACAM network biology. Indeed, CEACAM1, CEACAM5, and CEACAM6 are now considered valid clinical biomarkers and promising therapeutic targets in melanoma, lung, colorectal, and pancreatic cancers. These fascinating proteins illustrate how a better understanding of the CEACAM family of cell adhesion molecules reveals their functional link to the underlying disease and lead to new monitoring and targeting opportunities.