Functional promoter variants in sphingosine 1-phosphate receptor 3 associate with susceptibility to sepsis-associated acute respiratory distress syndrome

Am J Physiol Lung Cell Mol Physiol. 2013 Oct 1;305(7):L467-77. doi: 10.1152/ajplung.00010.2013. Epub 2013 Aug 2.

Abstract

The genetic mechanisms underlying the susceptibility to acute respiratory distress syndrome (ARDS) are poorly understood. We previously demonstrated that sphingosine 1-phosphate (S1P) and the S1P receptor S1PR3 are intimately involved in lung inflammatory responses and vascular barrier regulation. Furthermore, plasma S1PR3 protein levels were shown to serve as a biomarker of severity in critically ill ARDS patients. This study explores the contribution of single nucleotide polymorphisms (SNPs) of the S1PR3 gene to sepsis-associated ARDS. S1PR3 SNPs were identified by sequencing the entire gene and tagging SNPs selected for case-control association analysis in African- and ED samples from Chicago, with independent replication in a European case-control study of Spanish individuals. Electrophoretic mobility shift assays, luciferase activity assays, and protein immunoassays were utilized to assess the functionality of associated SNPs. A total of 80 variants, including 29 novel SNPs, were identified. Because of limited sample size, conclusive findings could not be drawn in African-descent ARDS subjects; however, significant associations were found for two promoter SNPs (rs7022797 -1899T/G; rs11137480 -1785G/C), across two ED samples supporting the association of alleles -1899G and -1785C with decreased risk for sepsis-associated ARDS. In addition, these alleles significantly reduced transcription factor binding to the S1PR3 promoter; reduced S1PR3 promoter activity, a response particularly striking after TNF-α challenge; and were associated with lower plasma S1PR3 protein levels in ARDS patients. These highly functional studies support S1PR3 as a novel ARDS candidate gene and a potential target for individualized therapy.

Keywords: acute respiratory distress syndrome; association study; disease predisposition; single nucleotide polymorphism; sphingosine 1-phosphate.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Base Sequence
  • Biomarkers / blood
  • Case-Control Studies
  • Electrophoretic Mobility Shift Assay
  • Female
  • Genetic Association Studies
  • Genetic Predisposition to Disease
  • Genotype
  • Humans
  • Lysophospholipids / metabolism
  • Male
  • Middle Aged
  • Molecular Sequence Data
  • Polymorphism, Single Nucleotide
  • Promoter Regions, Genetic*
  • Receptors, Lysosphingolipid / blood
  • Receptors, Lysosphingolipid / genetics*
  • Respiratory Distress Syndrome / blood
  • Respiratory Distress Syndrome / etiology
  • Respiratory Distress Syndrome / genetics*
  • Sepsis / complications*
  • Sequence Analysis, DNA
  • Sphingosine / analogs & derivatives
  • Sphingosine / metabolism
  • Sphingosine-1-Phosphate Receptors

Substances

  • Biomarkers
  • Lysophospholipids
  • Receptors, Lysosphingolipid
  • Sphingosine-1-Phosphate Receptors
  • sphingosine-1-phosphate receptor-3, human
  • sphingosine 1-phosphate
  • Sphingosine