Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013;50(4):265-78.
doi: 10.1159/000353287. Epub 2013 Jul 5.

Role of HOXA9 and VEZF1 in endothelial biology

Affiliations
Review

Role of HOXA9 and VEZF1 in endothelial biology

Marco Bruderer et al. J Vasc Res. 2013.

Abstract

Proper development of the vascular system as one of the earliest and most critical steps during vertebrate embryogenesis is ensured by the exact spatial and temporal control of gene expression in cells forming the vessel network. Whereas the regulation of vascular system development is well elucidated on the level of ligand-receptor signaling, the processes on the transcriptional level are much less understood. As the signaling mechanisms in embryogenesis and pathological conditions are similar, the study of embryonic blood vessel development is of great interest for the treatment of cardiovascular diseases and cancer. This review discusses two transcription factors, HOXA9 and VEZF1, which are relevant for endothelial biology but are excluded in the bulk of transcription factor references discussing endothelial biology. To our knowledge, there is no comprehensive overview of these two transcription factors available to date. Here, we summarize the current knowledge of human HOXA9 and VEZF1 biology and function, we detail their target genes and roles in endothelial biology and propose that HOXA9 and VEZF1 also deserve consideration as relevant transcriptional regulators of endothelial biology. Due to their broad role in multiple aspects of endothelial biology, they might potentially become interesting targets for therapeutic manipulation of pathological blood vessel growth.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources