Triggering sporulation in Bacillus subtilis with artificial two-component systems reveals the importance of proper Spo0A activation dynamics

Mol Microbiol. 2013 Oct;90(1):181-94. doi: 10.1111/mmi.12357. Epub 2013 Aug 23.

Abstract

Sporulation initiation in Bacillus subtilis is controlled by the phosphorylated form of the master regulator Spo0A which controls transcription of a multitude of sporulation genes. In this study, we investigated the importance of temporal dynamics of phosphorylated Spo0A (Spo0A∼P) accumulation by rewiring the network controlling its phosphorylation. We showed that simultaneous induction of KinC, a kinase that can directly phosphorylate Spo0A, and Spo0A itself from separately controlled inducible promoters can efficiently trigger sporulation even under nutrient rich conditions. However, the sporulation efficiency in this artificial two-component system was significantly impaired when KinC and/or Spo0A induction was too high. Using mathematical modelling, we showed that gradual accumulation of Spo0A∼P is essential for the proper temporal order of the Spo0A regulon expression, and that reduction in sporulation efficiency results from the reversal of that order. These insights led us to identify premature repression of DivIVA as one possible explanation for the adverse effects of accelerated accumulation of Spo0A∼P on sporulation. Moreover, we found that positive feedback resulting from autoregulation of the native spo0A promoter leads to robust control of Spo0A∼P accumulation kinetics. Thus we propose that a major function of the conserved architecture of the sporulation network is controlling Spo0A activation dynamics.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacillus subtilis / genetics
  • Bacillus subtilis / growth & development*
  • Bacterial Proteins / metabolism*
  • Cell Cycle Proteins / metabolism
  • Culture Media / chemistry
  • Gene Expression
  • Gene Expression Regulation, Bacterial*
  • Models, Theoretical
  • Phosphorylation
  • Protein Kinases / genetics
  • Protein Kinases / metabolism
  • Protein Processing, Post-Translational*
  • Spores, Bacterial / genetics
  • Spores, Bacterial / growth & development*
  • Transcription Factors / metabolism*

Substances

  • Bacterial Proteins
  • Cell Cycle Proteins
  • Culture Media
  • DivIVA protein, bacteria
  • Spo0A protein, Bacillus subtilis
  • Transcription Factors
  • Protein Kinases