Background: Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a potentially lifesaving maneuver in the setting of hemorrhagic shock. However, emergent use of REBOA is limited by existing technology, which requires large sheath arterial access and fluoroscopy-guided balloon positioning. The objectives of this study were to describe a new, fluoroscopy-free REBOA system and to compare its efficacy to existing technology. An additional objective was to characterize the survivability of 60 minutes of REBOA using these systems in a model of hemorrhagic shock.
Methods: Swine (70-88 kg) in shock underwent 60 minutes of REBOA using either a self-centering, one component prototype balloon system (PBS, n = 8) inserted (8 Fr) and inflated without fluoroscopy or a two-component, commercially available balloon system (CBS, n = 8) inserted (14 Fr) with fluoroscopic guidance. Following REBOA, resuscitation occurred for 48 hours with blood, crystalloid, and vasopressors. End points included accurate balloon positioning, hemodynamics, markers of ischemia, resuscitation requirements, and mortality.
Results: Posthemorrhage mean arterial pressure (mm Hg) was similar in the CBS and PBS groups (35 [8] vs. 34 [5]; p = 0.89). Accurate balloon positioning and inflation occurred in 100% of the CBS and 88% of the PBS group. Following REBOA, mean arterial pressure increased comparably in the CBS and PBS groups (81 [20] vs. 89 [16]; p = 0.21). Lactate peaked in the CBS and PBS groups (10.8 [1.4] mmol/L vs. 13.2 [2.1] mmol/L; p = 0.01) 45 minutes following balloon deflation but returned to baseline by 24 hours. Mortality was similar between the CBS and PBS groups (12% vs. 25%, p = 0.50).
Conclusion: This study reports the feasibility and efficacy of a novel, fluoroscopy-free REBOA system in a model of shock. Despite a significant physiologic insult, 60 minutes of REBOA is tolerated and recoverable. Development of lower profile, fluoroscopy-free endovascular balloon occlusion catheters may allow proactive aortic control in patients at risk for hemorrhagic shock and cardiovascular collapse.