To meet challenges in terms of throughput and turnaround time, many diagnostic laboratories are shifting from Sanger sequencing to higher throughput next-generation sequencing (NGS) platforms. Bearing in mind that the performance and quality criteria expected from NGS in diagnostic or research settings are strikingly different, we have developed an Ion Torrent's PGM-based routine diagnostic procedure for BRCA1/2 sequencing. The procedure was first tested on a training set of 62 control samples, and then blindly validated on 77 samples in parallel with our routine technique. The training set was composed of difficult cases, for example, insertions and/or deletions of various sizes, large-scale rearrangements and, obviously, mutations occurring in homopolymer regions. We also compared two bioinformatic solutions in this diagnostic context, an in-house academic pipeline and the commercially available NextGene software (Softgenetics). NextGene analysis provided higher sensitivity, as four previously undetected single-nucleotide variations were found. Regarding specificity, an average of 1.5 confirmatory Sanger sequencings per patient was needed for complete BRCA1/2 screening. Large-scale rearrangements were identified by two distinct analyses, that is, bioinformatics and fragment analysis with electrophoresis profile comparison. Turnaround time was enhanced, as a series of 30 patients were sequenced by one technician, making the results available for the clinician in 10 working days following blood sampling. BRCA1/2 genes are a good model, representative of the difficulties commonly encountered in diagnostic settings, which is why we believe our findings are of interest for the whole community, and the pipeline described can be adapted by any user of PGM for diagnostic purposes.