Synthetic lethal metabolic targeting of cellular senescence in cancer therapy

Nature. 2013 Sep 19;501(7467):421-5. doi: 10.1038/nature12437. Epub 2013 Aug 14.

Abstract

Activated oncogenes and anticancer chemotherapy induce cellular senescence, a terminal growth arrest of viable cells characterized by S-phase entry-blocking histone 3 lysine 9 trimethylation (H3K9me3). Although therapy-induced senescence (TIS) improves long-term outcomes, potentially harmful properties of senescent tumour cells make their quantitative elimination a therapeutic priority. Here we use the Eµ-myc transgenic mouse lymphoma model in which TIS depends on the H3K9 histone methyltransferase Suv39h1 to show the mechanism and therapeutic exploitation of senescence-related metabolic reprogramming in vitro and in vivo. After senescence-inducing chemotherapy, TIS-competent lymphomas but not TIS-incompetent Suv39h1(-) lymphomas show increased glucose utilization and much higher ATP production. We demonstrate that this is linked to massive proteotoxic stress, which is a consequence of the senescence-associated secretory phenotype (SASP) described previously. SASP-producing TIS cells exhibited endoplasmic reticulum stress, an unfolded protein response (UPR), and increased ubiquitination, thereby targeting toxic proteins for autophagy in an acutely energy-consuming fashion. Accordingly, TIS lymphomas, unlike senescence models that lack a strong SASP response, were more sensitive to blocking glucose utilization or autophagy, which led to their selective elimination through caspase-12- and caspase-3-mediated endoplasmic-reticulum-related apoptosis. Consequently, pharmacological targeting of these metabolic demands on TIS induction in vivo prompted tumour regression and improved treatment outcomes further. These findings unveil the hypercatabolic nature of TIS that is therapeutically exploitable by synthetic lethal metabolic targeting.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Autophagy* / drug effects
  • Caspase 12 / metabolism
  • Caspase 3 / metabolism
  • Cellular Senescence* / drug effects
  • Disease Models, Animal
  • Endoplasmic Reticulum Stress
  • Female
  • Glucose / metabolism*
  • Lymphoma, B-Cell / drug therapy*
  • Lymphoma, B-Cell / genetics
  • Lymphoma, B-Cell / metabolism*
  • Lymphoma, B-Cell / pathology
  • Male
  • Mice
  • Mice, Transgenic
  • Proteolysis
  • Stress, Physiological
  • Survival Rate

Substances

  • Caspase 12
  • Caspase 3
  • Glucose

Associated data

  • GEO/GSE31099
  • GEO/GSE44355