Highly monodispersed tin oxide/mesoporous starbust carbon composite as high-performance Li-ion battery anode

ACS Appl Mater Interfaces. 2013 Aug 28;5(16):7682-7. doi: 10.1021/am4021846. Epub 2013 Aug 19.

Abstract

The widespread commercialization of today's plug-in hybrid and all electric vehicles will rely on improved lithium batteries with higher energy density, greater power, and durability.To take advantage of the high density of SnO2 anodes for Li ion batteries, we achieved a smart design of monodispersed SnO2/MSCS composite with very high content of SnO2 by a simple infiltration procedure. The synergistic effects of the unique nanoarchitecture of MSCS and the ultrafine size of SnO2 nanoparticle endowed the composite with superior electrochemical performance. Because of the high density of the composite resulting from its monodispersed submicrometer spherical morphology, an exceptionally high reversible lithium storage capacity (both gravimetric and volumetric), very close to the theoretical capacity (1491 mA h/g), can be achieved with good cyclability (capacity retention of 92.5% after 15 cycles). The SnO2/MSCS composite anode exhibited a high reversible average capacity of about 1200 mAh/g over 30 cycles at a current of 80 mAh/g, which corresponds to about 1440 mAh/cm(3) (practical volumetric capacity). In addition, a Coulombic efficiency close to 100% was achieved, and less than 25% first irreversible capacity loss was observed.

MeSH terms

  • Carbon / chemistry
  • Electric Power Supplies*
  • Electrodes
  • Ions / chemistry
  • Lithium / chemistry*
  • Tin Compounds / chemistry*

Substances

  • Ions
  • Tin Compounds
  • Carbon
  • Lithium
  • stannic oxide