Proteinuria impairs podocyte regeneration by sequestering retinoic acid
- PMID: 23949798
- PMCID: PMC3810076
- DOI: 10.1681/ASN.2012090950
Proteinuria impairs podocyte regeneration by sequestering retinoic acid
Abstract
In CKD, the risk of kidney failure and death depends on the severity of proteinuria, which correlates with the extent of podocyte loss and glomerular scarring. We investigated whether proteinuria contributes directly to progressive glomerulosclerosis through the suppression of podocyte regeneration and found that individual components of proteinuria exert distinct effects on renal progenitor survival and differentiation toward a podocyte lineage. In particular, albumin prevented podocyte differentiation from human renal progenitors in vitro by sequestering retinoic acid, thus impairing retinoic acid response element (RARE)-mediated transcription of podocyte-specific genes. In mice with Adriamycin nephropathy, a model of human FSGS, blocking endogenous retinoic acid synthesis increased proteinuria and exacerbated glomerulosclerosis. This effect was related to a reduction in podocyte number, as validated through genetic podocyte labeling in NPHS2.Cre;mT/mG transgenic mice. In RARE-lacZ transgenic mice, albuminuria reduced retinoic acid bioavailability and impaired RARE activation in renal progenitors, inhibiting their differentiation into podocytes. Treatment with retinoic acid restored RARE activity and induced the expression of podocyte markers in renal progenitors, decreasing proteinuria and increasing podocyte number, as demonstrated in serial biopsy specimens. These results suggest that albumin loss through the damaged filtration barrier impairs podocyte regeneration by sequestering retinoic acid and promotes the generation of FSGS lesions. Our findings may explain why reducing proteinuria delays CKD progression and provide a biologic rationale for the clinical use of pharmacologic modulators to induce regression of glomerular diseases.
Figures
Comment in
-
A new mechanism for albuminuria-induced podocyte injury.J Am Soc Nephrol. 2013 Nov;24(11):1709-11. doi: 10.1681/ASN.2013070714. Epub 2013 Aug 29. J Am Soc Nephrol. 2013. PMID: 23990672 Free PMC article. No abstract available.
-
Glomerular disease: Albuminuria inhibits podocyte regeneration.Nat Rev Nephrol. 2013 Oct;9(10):554. doi: 10.1038/nrneph.2013.159. Epub 2013 Sep 3. Nat Rev Nephrol. 2013. PMID: 23999394 No abstract available.
Similar articles
-
CXCL12 blockade preferentially regenerates lost podocytes in cortical nephrons by targeting an intrinsic podocyte-progenitor feedback mechanism.Kidney Int. 2018 Dec;94(6):1111-1126. doi: 10.1016/j.kint.2018.08.013. Epub 2018 Oct 29. Kidney Int. 2018. PMID: 30385042 Free PMC article.
-
Notch activation differentially regulates renal progenitors proliferation and differentiation toward the podocyte lineage in glomerular disorders.Stem Cells. 2010 Sep;28(9):1674-85. doi: 10.1002/stem.492. Stem Cells. 2010. PMID: 20680961 Free PMC article.
-
[The role of podocyte damage in the pathogenesis of glomerulosclerosis and possible repair mechanisms].G Ital Nefrol. 2009 Nov-Dec;26(6):660-9. G Ital Nefrol. 2009. PMID: 19918748 Review. Italian.
-
Retinoids and glomerular regeneration.Semin Nephrol. 2014 Jul;34(4):429-36. doi: 10.1016/j.semnephrol.2014.06.009. Epub 2014 Jun 13. Semin Nephrol. 2014. PMID: 25217271 Review.
-
Podocyte repopulation by renal progenitor cells following glucocorticoids treatment in experimental FSGS.Am J Physiol Renal Physiol. 2013 Jun 1;304(11):F1375-89. doi: 10.1152/ajprenal.00020.2013. Epub 2013 Mar 13. Am J Physiol Renal Physiol. 2013. PMID: 23486009 Free PMC article.
Cited by
-
Modeled microgravity unravels the roles of mechanical forces in renal progenitor cell physiology.Stem Cell Res Ther. 2024 Jan 17;15(1):20. doi: 10.1186/s13287-024-03633-3. Stem Cell Res Ther. 2024. PMID: 38233961 Free PMC article.
-
Defining diagnostic trajectories in patients with podocytopathies.Clin Kidney J. 2022 May 3;15(11):2006-2019. doi: 10.1093/ckj/sfac123. eCollection 2022 Nov. Clin Kidney J. 2022. PMID: 36325008 Free PMC article. Review.
-
Kidney Injuries and Evolution of Chronic Kidney Diseases Due to Neonatal Hyperoxia Exposure Based on Animal Studies.Int J Mol Sci. 2022 Jul 31;23(15):8492. doi: 10.3390/ijms23158492. Int J Mol Sci. 2022. PMID: 35955627 Free PMC article. Review.
-
Differentiation of crescent-forming kidney progenitor cells into podocytes attenuates severe glomerulonephritis in mice.Sci Transl Med. 2022 Aug 10;14(657):eabg3277. doi: 10.1126/scitranslmed.abg3277. Epub 2022 Aug 10. Sci Transl Med. 2022. PMID: 35947676 Free PMC article.
-
Pathogenic Role of MicroRNA Dysregulation in Podocytopathies.Front Physiol. 2022 Jun 29;13:948094. doi: 10.3389/fphys.2022.948094. eCollection 2022. Front Physiol. 2022. PMID: 35845986 Free PMC article. Review.
References
-
- Couser WG, Remuzzi G, Mendis S, Tonelli M: The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int 80: 1258–1270, 2011 - PubMed
-
- Perico N, Benigni A, Remuzzi G: Present and future drug treatments for chronic kidney diseases: Evolving targets in renoprotection. Nat Rev Drug Discov 7: 936–953, 2008 - PubMed
-
- Wiggins RC: The spectrum of podocytopathies: A unifying view of glomerular diseases. Kidney Int 71: 1205–1214, 2007 - PubMed
-
- D’Agati VD, Kaskel FJ, Falk RJ: Focal segmental glomerulosclerosis. N Engl J Med 365: 2398–2411, 2011 - PubMed
-
- Shankland SJ: The podocyte’s response to injury: Role in proteinuria and glomerulosclerosis. Kidney Int 69: 2131–2147, 2006 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
