d+id' chiral superconductivity in bilayer silicene

Phys Rev Lett. 2013 Aug 9;111(6):066804. doi: 10.1103/PhysRevLett.111.066804. Epub 2013 Aug 6.

Abstract

We investigate the structure and physical properties of the undoped bilayer silicene through first-principles calculations and find the system is intrinsically metallic with sizable pocket Fermi surfaces. When realistic electron-electron interaction turns on, the system is identified as a chiral d+id' topological superconductor mediated by the strong spin fluctuation on the border of the antiferromagnetic spin density wave order. Moreover, the tunable Fermi pocket area via strain makes it possible to adjust the spin density wave critical interaction strength near the real one and enables a high superconducting critical temperature.