We obtained good intracellular recording from 5 W cells in the C-laminae of the cat's lateral geniculate nucleus. The recordings were made from an anesthetized and paralyzed in vivo preparation. We found a consistent pattern for the postsynaptic potentials evoked from activation of the optic chiasm: first was an IPSP followed by an EPSP. This is very different from the pattern seen in X and Y cells, for which an EPSP always appears first and is then followed by an IPSP. We interpret the pattern for W cells as follows. The initial IPSP is disynaptic; this involves retinogeniculate conduction over very fast Y axons and a relay through an interneuron. The EPSP is monosynaptic, reflecting retinogeniculate conduction over very slow W axons. A possible implication for this is that activity over the Y pathway may generally inhibit geniculate W cells before these W cells can be excited by their retinal afferents. Finally, we elicited from each of these W cells voltage-dependent, low threshold spikes, which are very similar to those displayed by X and Y cells. These spikes can interrupt normal retinogeniculate transmission, and they are prevented by maintaining relatively depolarized membrane potentials.