Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Feb;102(2):303-10.
doi: 10.1002/jbm.b.33008. Epub 2013 Aug 30.

Bone-derived titanium coating improves in vivo implant osseointegration in an experimental animal model

Affiliations

Bone-derived titanium coating improves in vivo implant osseointegration in an experimental animal model

Stefano Cecconi et al. J Biomed Mater Res B Appl Biomater. 2014 Feb.

Abstract

Coating of orthopaedic or dental Titanium (Ti) implants with extracellular bone matrix components (e.g., Type I collagen or hydroxyapatite) is usually performed to enhance their osseointegration. Aim of the present research is the evaluation of an innovative bone-derived Ti coating, containing bone apatite and Type I bone collagen preserved, in an experimental model. Coated and uncoated titanium implants were inserted into the extra-articular bone of the distal femur of twelve New Zealand White Rabbits. Labelling of bone formation was performed by sequential intraperitoneal administration of three stains. After 45 and 90 days animals were sacrificed. Bone specimens were embedded in a glycol methacrylate resin and sectioned along a plane parallel to the long axis of the implants for histomorphometric, scanning electron microscopy and energy dispersive X-ray analyses. Bone implant contact (BIC), trabecular thickness (Tb.Th) and calcium-phosphorus ratio were measured. Data were subjected to nonparametric Wilcoxon rank-sum test and Student's t test. All implants healed without adverse reactions. After 45 days from implant, significant (p < 0.05) differences in BIC (55.6 ± 17.1% vs. 29.2 ± 20.1%) and Tb.Th (108.7 ± 67.1 µm vs. 66.6 ± 48.6 µm) were observed between coated and uncoated implants. Significant (p < 0.05) differences in BIC (61.3 ± 2.1% vs. 35.7 ± 16.4%) and Tb.Th (211.4 ± 80.8 µm vs. 150.9 ± 61.5 µm) between coated and uncoated implants were also detected after 90 days. No differences were measured in calcium-phosphorous ratio. Our data indicate that Ti integration can be enhanced by the proposed surface coating. This could accelerate stable implant fixation and early or immediate loading of the device.

Keywords: bone-derived collagen; experimental study; osseointegration; titanium implant.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources