The molecular basis of the systemic induced resistance (SIR) phenotype known to occur in Austrian pine (Pinus nigra J.F. Arnold) in response to the tip blight and canker pathogen Diplodia pinea (Desm.) remains unclear. Specialized metabolites such as phenolics are considered to be an important component of plant defense, including SIR, but the antimicrobial activity of many of these putative defensive chemicals remains untested at realistic concentrations and in conjunction with each other. Here, we examined the anti-Diplodia activity of several previously identified Austrian pine phenolics associated with SIR by comparing the diameters of fungal colonies grown on media amended with ferulic acid, coumaric acid, taxifolin, pinosylvin, pinosylvin monomethyl ether and lignin. All of the compounds were tested both individually and as clusters (combinations) previously determined to occur in planta in a co-regulated fashion. Both the individual compounds and clusters were tested at constitutive concentrations and pathogen-induced concentrations linked to an SIR phenotype. Lignin possessed the strongest antifungal activity individually, and clusters at the SIR concentrations had the greatest antifungal effects, achieving fungistasis. This study exemplifies the value of evaluating potential biomarkers of resistance at in planta concentrations that are associated with the systemically resistant phenotype, and provides strong evidence that co-regulation of chemical defenses potentiates such a phenotype.
Keywords: Pinus nigra; antifungal; bioassay; chemical defense; metabolites.