Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization
- PMID: 24016039
- DOI: 10.1021/nn4035266
Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization
Abstract
This article develops a set of design guidelines for maximizing heat dissipation characteristics of magnetic ferrite MFe2O4 (M = Mn, Fe, Co) nanoparticles in alternating magnetic fields. Using magnetic and structural nanoparticle characterization, we identify key synthetic parameters in the thermal decomposition of organometallic precursors that yield optimized magnetic nanoparticles over a wide range of sizes and compositions. The developed synthetic procedures allow for gram-scale production of magnetic nanoparticles stable in physiological buffer for several months. Our magnetic nanoparticles display some of the highest heat dissipation rates, which are in qualitative agreement with the trends predicted by a dynamic hysteresis model of coherent magnetization reversal in single domain magnetic particles. By combining physical simulations with robust scalable synthesis and materials characterization techniques, this work provides a pathway to a model-driven design of magnetic nanoparticles tailored to a variety of biomedical applications ranging from cancer hyperthermia to remote control of gene expression.
Similar articles
-
Ultrasmall iron oxide nanoparticles for biomedical applications: improving the colloidal and magnetic properties.Langmuir. 2012 Jan 10;28(1):178-85. doi: 10.1021/la203428z. Epub 2011 Dec 2. Langmuir. 2012. PMID: 22103685
-
Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.Nanoscale. 2014 Nov 7;6(21):12958-70. doi: 10.1039/c4nr03004d. Nanoscale. 2014. PMID: 25232657
-
Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.J Am Chem Soc. 2007 Mar 7;129(9):2628-35. doi: 10.1021/ja067457e. Epub 2007 Feb 1. J Am Chem Soc. 2007. PMID: 17266310
-
Magnetic iron oxide nanoparticles for biomedical applications.Future Med Chem. 2010 Mar;2(3):427-49. doi: 10.4155/fmc.09.164. Future Med Chem. 2010. PMID: 21426176 Review.
-
Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids.Mater Sci Eng C Mater Biol Appl. 2013 Jul 1;33(5):2476-87. doi: 10.1016/j.msec.2013.03.028. Epub 2013 Mar 24. Mater Sci Eng C Mater Biol Appl. 2013. PMID: 23623058 Review.
Cited by
-
Modulating cell signalling in vivo with magnetic nanotransducers.Nat Rev Methods Primers. 2022;2:92. doi: 10.1038/s43586-022-00170-2. Epub 2022 Nov 17. Nat Rev Methods Primers. 2022. PMID: 38111858 Free PMC article.
-
Cobalt Ferrite Synthesized Using a Biogenic Sol-Gel Method for Biomedical Applications.Molecules. 2023 Nov 23;28(23):7737. doi: 10.3390/molecules28237737. Molecules. 2023. PMID: 38067467 Free PMC article.
-
Diagnostic and Therapeutic Approaches for Glioblastoma and Neuroblastoma Cancers Using Chlorotoxin Nanoparticles.Cancers (Basel). 2023 Jun 28;15(13):3388. doi: 10.3390/cancers15133388. Cancers (Basel). 2023. PMID: 37444498 Free PMC article. Review.
-
The magnetopyroelectric effect: heat-mediated magnetoelectricity in magnetic nanoparticle-ferroelectric polymer composites.Mater Horiz. 2023 Jul 3;10(7):2627-2637. doi: 10.1039/d2mh01361d. Mater Horiz. 2023. PMID: 37185815 Free PMC article.
-
Tuning the Magnetic Response of Magnetospirillum magneticum by Changing the Culture Medium: A Straightforward Approach to Improve Their Hyperthermia Efficiency.ACS Appl Mater Interfaces. 2023 Jan 11;15(1):566-577. doi: 10.1021/acsami.2c18435. Epub 2022 Dec 23. ACS Appl Mater Interfaces. 2023. PMID: 36563339 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
