Organic field-effect transistor sensors: a tutorial review

Chem Soc Rev. 2013 Nov 21;42(22):8612-28. doi: 10.1039/c3cs60127g.


The functioning principles of electronic sensors based on organic semiconductor field-effect transistors (OFETs) are presented. The focus is on biological sensors but also chemical ones are reviewed to address general features. The field-induced electronic transport and the chemical and biological interactions for the sensing, each occurring at the relevant functional interface, are separately introduced. Once these key learning points have been acquired, the combined picture for the FET electronic sensing is proposed. The perspective use of such devices in point-of-care is introduced, after some basics on analytical biosensing systems are provided as well. This tutorial review includes also a necessary overview of the OFET sensing structures, but the focus will be on electronic rather than electrochemical detection. The differences among the structures are highlighted along with the implications on the performance level in terms of key analytical figures of merit such as: repeatability, sensitivity and selectivity.