Quantifying transcription factor kinetics: at work or at play?

Crit Rev Biochem Mol Biol. Sep-Oct 2013;48(5):492-514. doi: 10.3109/10409238.2013.833891. Epub 2013 Sep 11.

Abstract

Transcription factors (TFs) interact dynamically in vivo with chromatin binding sites. Here we summarize and compare the four different techniques that are currently used to measure these kinetics in live cells, namely fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), single molecule tracking (SMT) and competition ChIP (CC). We highlight the principles underlying each of these approaches as well as their advantages and disadvantages. A comparison of data from each of these techniques raises an important question: do measured transcription kinetics reflect biologically functional interactions at specific sites (i.e. working TFs) or do they reflect non-specific interactions (i.e. playing TFs)? To help resolve this dilemma we discuss five key unresolved biological questions related to the functionality of transient and prolonged binding events at both specific promoter response elements as well as non-specific sites. In support of functionality, we review data suggesting that TF residence times are tightly regulated, and that this regulation modulates transcriptional output at single genes. We argue that in addition to this site-specific regulatory role, TF residence times also determine the fraction of promoter targets occupied within a cell thereby impacting the functional status of cellular gene networks. Thus, TF residence times are key parameters that could influence transcription in multiple ways.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Humans
  • Kinetics
  • Promoter Regions, Genetic / genetics
  • Protein Binding
  • Transcription Factors / metabolism*

Substances

  • Transcription Factors