The Notch signaling pathway: its role in focal CNS demyelination and apotransferrin-induced remyelination

J Neurochem. 2013 Dec;127(6):819-36. doi: 10.1111/jnc.12440. Epub 2013 Oct 18.

Abstract

Oligodendroglial damage and demyelination are common pathological features characterizing white matter and neurodegenerative disorders. Identifying the signaling pathways involved in myelin repair through oligodendroglial progenitor maturation is essential for the development of new therapies. This article investigated the role of the Notch signaling pathway in CNS demyelination and apotransferrin-induced remyelination in a focal lysolecithin-induced demyelination model in rats. Notch was found activated in Nestin-expressing neural progenitor cells and in NG2-expressing oligodendroglial precursor cells in the subventricular zone and corpus callosum of lysolecithin-demyelinated rats. Notch activation seemed to be driven by Jagged1, which led to a high expression of downstream gene Hes5 in the subventricular zone of demyelinated rats. Apotransferrin injection induced remyelination, while the injection of the γ-secretase inhibitor reversed this effect. In addition, 24 h after apotransferrin injection, evidence showed Notch activation concomitantly with an increase in F3/contactin levels and the up-regulation of the myelin-associated glycoprotein gene in the subventricular zone and corpus callosum of demyelinated rats. Collected evidence supports the participation of both canonical and non-canonical Notch signaling pathways in demyelination/remyelination. Notch activation was found to trigger Hes5 expression as a consequence of focal demyelination, which might promote oligodendroglial precursor cell proliferation. During apotransferrin-induced remyelination, Notch activation seemed to be mediated by the expression of F3/contactin, which might induce apotransferrin-mediated oligodendroglial maturation. Evidence of the participation of Notch signaling in the demyelination/remyelination process will help further understand demyelinating disorders such as Multiple Sclerosis and the use of aTf should be taken into consideration as a possible therapeutic intervention.

Keywords: apotransferrin; demyelination; notch signalling; remyelination.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoproteins / pharmacology*
  • Brain / drug effects
  • Brain / metabolism*
  • Brain / pathology
  • Corpus Callosum / drug effects
  • Corpus Callosum / metabolism
  • Corpus Callosum / pathology
  • Demyelinating Diseases / chemically induced
  • Demyelinating Diseases / metabolism*
  • Demyelinating Diseases / pathology
  • Female
  • Lysophosphatidylcholines
  • Male
  • Myelin Sheath / metabolism*
  • Neural Stem Cells / pathology
  • Oligodendroglia / pathology
  • Rats
  • Rats, Wistar
  • Receptors, Notch / metabolism*
  • Signal Transduction
  • Transferrin / pharmacology*

Substances

  • Apoproteins
  • Lysophosphatidylcholines
  • Receptors, Notch
  • Transferrin
  • apotransferrin