Direct Evidence of Two Equilibration Mechanisms in Glassy Polymers

Phys Rev Lett. 2013 Aug 30;111(9):095701. doi: 10.1103/PhysRevLett.111.095701. Epub 2013 Aug 27.

Abstract

We investigated the kinetics of enthalpy recovery of several glass-forming polymers at temperatures significantly below the glass transition temperature (Tg) and for aging times up to one year. We find a double-step recovery at relatively low aging temperatures for the longest investigated aging times. The enthalpy recovered after the two-step decay approximately equals that expected by extrapolation from the melt. The two-step enthalpy recovery indicates the presence of two time scales for glass equilibration. The equilibration time of the first recovery step exhibits relatively weak temperature dependence, whereas that of the second step possesses pronounced temperature dependence, compatible with the Vogel-Fulcher-Tammann behavior. These results, while leaving open the question of the divergence of the relaxation time and that of a thermodynamic singularity at a finite temperature, reveal a complex scenario of glassy dynamics.