Evaluation of the carcinogenicity of inorganic arsenic

Crit Rev Toxicol. 2013 Oct;43(9):711-52. doi: 10.3109/10408444.2013.827152.


Inorganic arsenic (iAs) at high exposures is a human carcinogen, affecting mainly the urinary bladder, lung and skin. We present an assessment of the mode of action (MOA) of iAs's carcinogenicity based on the United States Environmental Protection Agency/International Programme on Chemical Safety (USEPA/IPCS) framework, focusing primarily on bladder cancer. Evidence is presented for a MOA involving formation of reactive trivalent metabolites interacting with critical cellular sulfhydryl groups, leading to cytotoxicity and regenerative cell proliferation. Metabolism, kinetics, cell transport, and reaction with specific proteins play a critical role in producing the effects at the cellular level, regardless of cell type, whether urothelium, lung epithelium or epidermis. The cytotoxicity induced by iAs results in non-cancer toxicities, and the regenerative cell proliferation enhances development of epithelial cancers. In other tissues, such as vascular endothelium, different toxicities develop, not cancer. Evidence supporting this MOA comes from in vitro investigations on animal and human cells, from animal models, and from epidemiological studies. This MOA implies a non-linear, threshold dose-response relationship for both non-cancer and cancer end points. The no effect levels in animal models (approximately 1 ppm of water or diet) and in vitro (>0.1 µM trivalent arsenicals) are strikingly consistent. Cancer effects of iAs in humans generally are not observed below exposures of 100-150 ppb in drinking water: below these exposures, human urine concentrations of trivalent metabolites are generally below 0.1 µM, a concentration not associated with bladder cell cytotoxicity in in vitro or animal models. Environmental exposures to iAs in most of the United States do not approach this threshold.

Publication types

  • Review

MeSH terms

  • Animals
  • Arsenic / pharmacology
  • Arsenic / toxicity*
  • Carcinogens / toxicity*
  • Cell Proliferation
  • Drinking Water
  • Environmental Exposure
  • Humans
  • United States
  • Urinary Bladder Neoplasms / chemically induced*
  • Urinary Bladder Neoplasms / epidemiology


  • Carcinogens
  • Drinking Water
  • Arsenic