Probing the protein-folding mechanism using denaturant and temperature effects on rate constants

Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):16784-9. doi: 10.1073/pnas.1311948110. Epub 2013 Sep 16.

Abstract

Protein folding has been extensively studied, but many questions remain regarding the mechanism. Characterizing early unstable intermediates and the high-free-energy transition state (TS) will help answer some of these. Here, we use effects of denaturants (urea, guanidinium chloride) and temperature on folding and unfolding rate constants and the overall equilibrium constant as probes of surface area changes in protein folding. We interpret denaturant kinetic m-values and activation heat capacity changes for 13 proteins to determine amounts of hydrocarbon and amide surface buried in folding to and from TS, and for complete folding. Predicted accessible surface area changes for complete folding agree in most cases with structurally determined values. We find that TS is advanced (50-90% of overall surface burial) and that the surface buried is disproportionately amide, demonstrating extensive formation of secondary structure in early intermediates. Models of possible pre-TS intermediates with all elements of the native secondary structure, created for several of these proteins, bury less amide and hydrocarbon surface than predicted for TS. Therefore, we propose that TS generally has both the native secondary structure and sufficient organization of other regions of the backbone to nucleate subsequent (post-TS) formation of tertiary interactions. The approach developed here provides proof of concept for the use of denaturants and other solutes as probes of amount and composition of the surface buried in coupled folding and other large conformational changes in TS and intermediates in protein processes.

Keywords: collapse; kinetics; native fold; protein denaturation; stability.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Models, Chemical*
  • Protein Denaturation*
  • Protein Folding*
  • Proteins / chemistry*

Substances

  • Proteins